Suppr超能文献

用于生物数据挖掘的非负矩阵分解工具箱。

The non-negative matrix factorization toolbox for biological data mining.

作者信息

Li Yifeng, Ngom Alioune

机构信息

School of Computer Science, University of Windsor, Windsor, Ontario, Canada.

出版信息

Source Code Biol Med. 2013 Apr 16;8(1):10. doi: 10.1186/1751-0473-8-10.

Abstract

BACKGROUND

Non-negative matrix factorization (NMF) has been introduced as an important method for mining biological data. Though there currently exists packages implemented in R and other programming languages, they either provide only a few optimization algorithms or focus on a specific application field. There does not exist a complete NMF package for the bioinformatics community, and in order to perform various data mining tasks on biological data.

RESULTS

We provide a convenient MATLAB toolbox containing both the implementations of various NMF techniques and a variety of NMF-based data mining approaches for analyzing biological data. Data mining approaches implemented within the toolbox include data clustering and bi-clustering, feature extraction and selection, sample classification, missing values imputation, data visualization, and statistical comparison.

CONCLUSIONS

A series of analysis such as molecular pattern discovery, biological process identification, dimension reduction, disease prediction, visualization, and statistical comparison can be performed using this toolbox.

摘要

背景

非负矩阵分解(NMF)已作为挖掘生物数据的一种重要方法被引入。尽管目前存在用R和其他编程语言实现的软件包,但它们要么只提供少数几种优化算法,要么专注于特定的应用领域。生物信息学领域不存在一个完整的NMF软件包,以便对生物数据执行各种数据挖掘任务。

结果

我们提供了一个便捷的MATLAB工具箱,它既包含各种NMF技术的实现,也包含多种基于NMF的用于分析生物数据的数据挖掘方法。该工具箱中实现的数据挖掘方法包括数据聚类和双聚类、特征提取与选择、样本分类、缺失值插补、数据可视化以及统计比较。

结论

使用这个工具箱可以进行一系列分析,如分子模式发现、生物过程识别、降维、疾病预测、可视化以及统计比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/487f/3736608/6b4bb2c48fc6/1751-0473-8-10-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验