Department of Oncology and Division of Oncology, Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
Bioinformatics. 2010 Nov 1;26(21):2792-3. doi: 10.1093/bioinformatics/btq503. Epub 2010 Sep 1.
Coordinated Gene Activity in Pattern Sets (CoGAPS) provides an integrated package for isolating gene expression driven by a biological process, enhancing inference of biological processes from transcriptomic data. CoGAPS improves on other enrichment measurement methods by combining a Markov chain Monte Carlo (MCMC) matrix factorization algorithm (GAPS) with a threshold-independent statistic inferring activity on gene sets. The software is provided as open source C++ code built on top of JAGS software with an R interface.
The R package CoGAPS and the C++ package GAPS-JAGS are provided open source under the GNU Lesser Public License (GLPL) with a users manual containing installation and operating instructions. CoGAPS is available through Bioconductor and depends on the rjags package available through CRAN to interface CoGAPS with GAPS-JAGS. URL: http://www.cancerbiostats.onc.jhmi.edu/cogaps.cfm .
协调模式集基因活性(CoGAPS)提供了一个集成的软件包,用于分离由生物学过程驱动的基因表达,增强从转录组数据推断生物学过程的能力。CoGAPS 通过将马尔可夫链蒙特卡罗(MCMC)矩阵分解算法(GAPS)与一种不依赖于阈值的基因集活性推断统计量相结合,改进了其他富集测量方法。该软件作为基于 JAGS 软件的开源 C++代码提供,并带有 R 接口。
CoGAPS 的 R 包和 GAPS-JAGS 的 C++包根据 GNU 较宽松公共许可证(LGPL)以开源形式提供,并附有安装和操作说明的用户手册。CoGAPS 可通过 Bioconductor 使用,并且依赖于可通过 CRAN 获得的 rjags 包来与 GAPS-JAGS 接口。网址:http://www.cancerbiostats.onc.jhmi.edu/cogaps.cfm。