Suppr超能文献

Involvement of cytochrome P-450c in alpha-naphthoflavone metabolism by rat liver microsomes.

作者信息

Andries M J, Lucier G W, Goldstein J, Thompson C L

机构信息

National Institute of Environmental Health Sciences, Laboratory of Biochemical Risk Analysis, Research Triangle Park, North Carolina 27709.

出版信息

Mol Pharmacol. 1990 Jun;37(6):990-5.

PMID:2359409
Abstract

Metabolism of alpha-naphthoflavone (ANF) is increased markedly in rat liver microsomes by 3-methylcholanthrene (3-MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), two inducers of cytochromes P-450c and P-450d (P-450c and P-450d). Although several indirect lines of evidence in the literature suggest that ANF is metabolized by P-450c, Vyas et al. [J. Biol. Chem. 258:5649-5659 (1983)] reported that ANF metabolism by 3-MC-induced rat liver microsomes was only partially inhibited by antibodies against P-450c. Our laboratory has previously reported clastogenic effects of metabolites of ANF, and in the present study we reexamined the role of P-450c in ANF metabolism by both uninduced and TCDD-induced rat liver microsomes, using monospecific polyclonal antibodies to P-450c and P-450d. ANF metabolism was inhibited to different extents in TCDD-induced microsomes by different preparations of anti-P-450c. One lot of anti-P-450c produced only 50% inhibition of ANF metabolism in TCDD-induced microsomes, whereas another lot of anti-P-450c inhibited ANF metabolism by 80%. Anti-P-450d had no effect on ANF metabolism. Neither anti-P-450c nor anti-P-450d inhibited ANF metabolism in uninduced rat liver microsomes. In a reconstituted enzyme system, purified P-450c metabolized ANF 47 and 510 times more rapidly than P-450d and P-450b, respectively. Metabolites resulting from oxidation at 7,8- or 5,6-positions (7,8-dihydro-7,8-dihydroxy-ANF, 5,6-dihydro-5,6-dihydroxy-ANF, 5,6-oxide-ANF, and 6-hydroxy-ANF) were formed by all preparations of microsomes. An unknown toxic ANF metabolite was formed only with a reconstituted P-450c system and with 3-MC- or TCDD-induced microsomes. Our results indicate that P-450c is responsible for the majority of the metabolism of ANF in TCDD-induced microsomes, whereas other constitutive isozymes are responsible for the metabolism seen in uninduced liver microsomes. The variable inhibition of ANF metabolism with different lots of anti-P-450c probably reflects the differences in the proportion of antibodies to different epitopes important in the binding or metabolism of this substrate.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验