State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P R China.
Langmuir. 2013 May 14;29(19):5896-904. doi: 10.1021/la400415h. Epub 2013 Apr 29.
Mercury (Hg(2+)) is a highly toxic and widespread environmental pollutant. Herein, a regenerable and highly selective core-shell structured magnetic mesoporous silica nanocomposite with functionalization of thymine (T) and T-rich DNA (denoted as Fe3O4@nSiO2@mSiO2-T-TRDNA nanocomposite) has been developed for simultaneous detection and removal of Hg(2+). In this work, the thymine and T-rich DNA were immobilized onto the interior and exterior surface of outermost mesoporous silica, respectively. The detection mechanism is based on Hg(2+)-mediated hairpin structure formed by T-rich DNA functionalized on the exterior surface of the nanocomposites, where, upon addition of SYBR Green I dye, strong fluorescence is observed. In the absence of Hg(2+), however, addition of the dye results in low fluorescence. The limit of detection for Hg(2+) in a buffer is 2 nM by fluorescence spectroscopy. Simultaneously, the Fe3O4@nSiO2@mSiO2-T-TRDNA nanocomposite features a selective binding with Hg(2+) between two thymines immobilized at the interior surface of the mesopores and exhibits efficient and convenient Hg(2+) removal by a magnet. Kinetic study reveals that the Hg(2+) removal is a rapid process with over 80% of Hg(2+) removed within approximately 1 h. The applicability of the developed nanocomposites is demonstrated to detect and remove Hg(2+) from samples of Xiangjiang river water spiked with Hg(2+). In addition, distinguishing aspects of the Fe3O4@nSiO2@mSiO2-T-TRDNA nanocomposites for Hg(2+) detection and removal also include the regeneration using a simple acid treatment and resistance to nuclease digestion. Similar process can be used to functionalize the Fe3O4@nSiO2@mSiO2 nanocomposites with other nucleic acids and small molecules for environmental and biomedical applications.
汞(Hg(2+))是一种具有高毒性和广泛分布性的环境污染物。在此,我们开发了一种可再生且对 Hg(2+)具有高选择性的核壳结构磁性介孔硅纳米复合材料,其表面功能化有胸腺嘧啶(T)和富含 T 的 DNA(记为 Fe3O4@nSiO2@mSiO2-T-TRDNA 纳米复合材料),可用于同时检测和去除 Hg(2+)。在这项工作中,胸腺嘧啶和富含 T 的 DNA 分别被固定在最外层介孔硅的内外表面。检测机制基于 T-富含 DNA 在外表面形成的 Hg(2+)-介导的发夹结构,加入 SYBR Green I 染料后,观察到强烈的荧光。然而,在没有 Hg(2+)的情况下,加入染料会导致荧光较弱。通过荧光光谱法,在缓冲液中检测 Hg(2+)的检出限为 2 nM。同时,Fe3O4@nSiO2@mSiO2-T-TRDNA 纳米复合材料在两个固定在内孔表面的胸腺嘧啶之间具有与 Hg(2+)的选择性结合,并通过磁铁实现高效且方便的 Hg(2+)去除。动力学研究表明,Hg(2+)的去除是一个快速过程,在大约 1 h 内可去除超过 80%的 Hg(2+)。该开发的纳米复合材料已被证明可用于检测和去除湘江河水样中的 Hg(2+)。此外,Fe3O4@nSiO2@mSiO2-T-TRDNA 纳米复合材料在用于 Hg(2+)检测和去除方面的区别还包括使用简单的酸处理进行再生以及抵抗核酸酶消化。类似的过程可以用于将 Fe3O4@nSiO2@mSiO2 纳米复合材料功能化,用于环境和生物医学应用。