Suppr超能文献

通过物理和化学吸附原理去除水溶液中的汞(II)。

Removal of Hg(ii) in aqueous solutions through physical and chemical adsorption principles.

作者信息

Xia Mengdan, Chen Zhixin, Li Yao, Li Chuanhua, Ahmad Nasir M, Cheema Waqas A, Zhu Shenmin

机构信息

State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 PR China

Engineering Materials Institute, School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong Wollongong 2522 Australia.

出版信息

RSC Adv. 2019 Jul 4;9(36):20941-20953. doi: 10.1039/c9ra01924c. eCollection 2019 Jul 1.

Abstract

Adsorption has been the focus of research on the treatment of heavy metal mercury pollution since it is among the most toxic heavy metals in existence. The US EPA has set a mandatory discharge limit of 10 μg Hg L for wastewater and for drinking water a maximum accepted concentration of 1 μg Hg L. Physical adsorption and chemical adsorption are the two major mechanisms of adsorption methods used for mercury removal in aqueous sources. The recent decades' research progress is reviewed to elaborate varieties of adsorption materials ranging from materials with large surface area for physical adsorption to metal oxides for chemical adsorption. Many examples are presented to illustrate the adsorption principles and clarify the relationship between the structure and performance of the adsorbents. The combination of physical adsorption and chemical adsorption gives rise to numbers of potential mercury removal composites. This review demonstrates the adsorption mechanism and the performance of varieties of adsorbents, which would provide a comprehensive understanding on the design and fabrication of new materials for the removal of heavy metal ions in water.

摘要

由于汞是现存毒性最强的重金属之一,吸附法一直是重金属汞污染治理研究的重点。美国环境保护局规定废水的汞排放强制限值为10μg/L,饮用水中汞的最大允许浓度为1μg/L。物理吸附和化学吸附是用于去除水源中汞的吸附法的两种主要机制。本文综述了近几十年来的研究进展,阐述了从用于物理吸附的大表面积材料到用于化学吸附的金属氧化物等各种吸附材料。列举了许多实例来说明吸附原理,并阐明吸附剂的结构与性能之间的关系。物理吸附和化学吸附的结合产生了许多潜在的汞去除复合材料。本综述展示了各种吸附剂的吸附机理和性能,这将有助于全面了解用于去除水中重金属离子的新材料的设计与制备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d05/9066024/3f96ebe97faa/c9ra01924c-f1.jpg

相似文献

1
Removal of Hg(ii) in aqueous solutions through physical and chemical adsorption principles.
RSC Adv. 2019 Jul 4;9(36):20941-20953. doi: 10.1039/c9ra01924c. eCollection 2019 Jul 1.
2
Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for heavy metal removal.
J Hazard Mater. 2003 Feb 28;97(1-3):111-25. doi: 10.1016/s0304-3894(02)00259-5.
3
A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions.
Environ Sci Pollut Res Int. 2020 Dec;27(36):44771-44796. doi: 10.1007/s11356-020-10738-8. Epub 2020 Sep 25.
5
High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass.
Chemosphere. 2017 Mar;171:19-30. doi: 10.1016/j.chemosphere.2016.12.049. Epub 2016 Dec 10.
6
Efficient mercury removal from aqueous solutions using carboxylated TiCT MXene.
J Hazard Mater. 2022 Jul 15;434:128780. doi: 10.1016/j.jhazmat.2022.128780. Epub 2022 Mar 26.
7
Nanomaterials as versatile adsorbents for heavy metal ions in water: a review.
Environ Sci Pollut Res Int. 2019 Mar;26(7):6245-6278. doi: 10.1007/s11356-018-04093-y. Epub 2019 Jan 9.
8
Removal of mercury species with dithiocarbamate-anchored polymer/organosmectite composites.
J Hazard Mater. 2008 Feb 11;150(3):560-4. doi: 10.1016/j.jhazmat.2007.03.089. Epub 2007 May 10.
9
Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review.
Chemosphere. 2022 Jan;287(Pt 1):131959. doi: 10.1016/j.chemosphere.2021.131959. Epub 2021 Aug 24.
10
Removal of Mercury Ions from Aqueous Solutions by Crosslinked Chitosan-based Adsorbents: A Mini Review.
Chem Rec. 2020 Oct;20(10):1220-1234. doi: 10.1002/tcr.202000073. Epub 2020 Sep 4.

引用本文的文献

2
Iodide ion-imprinted chitosan beads for highly selective adsorption for nuclear wastewater treatment applications.
Heliyon. 2024 Jan 20;10(3):e24735. doi: 10.1016/j.heliyon.2024.e24735. eCollection 2024 Feb 15.
4
Bio-Based Adsorption as Ecofriendly Method for Wastewater Decontamination: A Review.
Toxics. 2023 Apr 24;11(5):404. doi: 10.3390/toxics11050404.
5
Synthesis of Fe-THC MOFs and functionalizing MOFs by MXenes for the selective removal of lead(ii) ions from wastewater.
RSC Adv. 2023 Feb 15;13(9):5643-5655. doi: 10.1039/d2ra08102d. eCollection 2023 Feb 14.
6
Adsorption of sulfur into an alkynyl-based covalent organic framework for mercury removal.
RSC Adv. 2022 Dec 12;12(54):35445-35451. doi: 10.1039/d2ra06838a. eCollection 2022 Dec 6.
7
Appraisal of Cu(ii) adsorption by graphene oxide and its modelling artificial neural network.
RSC Adv. 2019 Sep 24;9(52):30240-30248. doi: 10.1039/c9ra06079k. eCollection 2019 Sep 23.
8
Removal of aqueous Hg(ii) by thiol-functionalized nonporous silica microspheres prepared by one-step sol-gel method.
RSC Adv. 2020 May 15;10(31):18534-18542. doi: 10.1039/d0ra02759f. eCollection 2020 May 10.

本文引用的文献

1
Superior removal of Hg (II) ions from wastewater using hierarchically porous, functionalized carbon.
J Hazard Mater. 2019 Jun 5;371:33-41. doi: 10.1016/j.jhazmat.2019.02.099. Epub 2019 Feb 27.
2
Seasonal antimony pollution caused by high mobility of antimony in sediments: In situ evidence and mechanical interpretation.
J Hazard Mater. 2019 Apr 5;367:427-436. doi: 10.1016/j.jhazmat.2018.12.101. Epub 2018 Dec 27.
3
Nanocolloidal Hydrogel for Heavy Metal Scavenging.
ACS Nano. 2018 Aug 28;12(8):8160-8168. doi: 10.1021/acsnano.8b03202. Epub 2018 Jul 13.
4
Investigating the impacts of cascade hydropower development on the natural flow regime in the Yangtze River, China.
Sci Total Environ. 2018 May 15;624:1187-1194. doi: 10.1016/j.scitotenv.2017.12.212. Epub 2017 Dec 27.
5
Novel Carbon Paper@Magnesium Silicate Composite Porous Films: Design, Fabrication, and Adsorption Behavior for Heavy Metal Ions in Aqueous Solution.
ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22776-22785. doi: 10.1021/acsami.8b01557. Epub 2018 Jun 22.
7
Polyamide magnetic palygorskite for the simultaneous removal of Hg(II) and methyl mercury; with factorial design analysis.
J Environ Manage. 2018 Apr 1;211:323-333. doi: 10.1016/j.jenvman.2018.01.050. Epub 2018 Feb 6.
8
Cellulose nanocrystals as carriers in medicine and their toxicities: A review.
Carbohydr Polym. 2018 Feb 1;181:514-527. doi: 10.1016/j.carbpol.2017.12.014. Epub 2017 Dec 7.
9
High flux water purification using aluminium hydroxide hydrate gels.
Sci Rep. 2017 Dec 12;7(1):17437. doi: 10.1038/s41598-017-17741-z.
10
Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite.
J Hazard Mater. 2018 Feb 15;344:811-818. doi: 10.1016/j.jhazmat.2017.11.026. Epub 2017 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验