Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
Phys Chem Chem Phys. 2013 Aug 7;15(29):12075-87. doi: 10.1039/c3cp50659b. Epub 2013 Apr 18.
We used temperature programmed reaction spectroscopy (TPRS) and molecular beam reflectivity measurements to investigate the initial dissociation of n-butane isotopologues on PdO(101) and determine kinetic parameters governing the selectivity of initial C-H(D) bond cleavage. We observe differences in the reactivity of the n-butane isotopologues on PdO(101) due to kinetic isotope effects, and find that the initial dissociation probability decreases with increasing surface temperature for each isotopologue. We performed an analysis of the dissociation kinetics using a model that is based on a precursor-mediated mechanism for n-butane dissociation and enables quantification of kinetic parameters for selective C-H bond cleavage by considering differences in the reactivity among the n-butane isotopologues. From the analysis, we estimate that 49% of the n-butane molecules which react during TPRS do so through 1° C-H bond cleavage when the initial coverage of n-butane lies between ∼40% and 100% of the saturation coverage of the molecular precursor state. For dissociation in the limit of zero coverage, we estimate that the conditional probability for 1° C-H bond cleavage is equal to ∼87% and varies only weakly with surface temperature from 300 K to 400 K. Analysis of the temperature dependent rate data further predicts that the barrier for 1° C-H bond cleavage is 3.5 kJ mol(-1) lower than that for 2° C-H bond cleavage for n-butane dissociation on PdO(101) in the limit of zero coverage. Our results provide evidence that the selectivity for 1° C-H bond cleavage on PdO(101) increases as the n-butane coverage decreases below ∼40% of the saturation value. We speculate that intermolecular interactions among the n-butane species are responsible for the apparent coverage dependence of the C-H bond selectivity for n-butane dissociation on PdO(101).
我们使用温度程序反应光谱(TPRS)和分子束反射率测量来研究正丁烷同位素在 PdO(101)上的初始解离,并确定控制初始 C-H(D)键断裂选择性的动力学参数。我们观察到由于动力学同位素效应,正丁烷同位素在 PdO(101)上的反应性存在差异,并发现每个同位素的初始解离概率随表面温度的升高而降低。我们使用基于正丁烷解离前体介导机制的模型对解离动力学进行了分析,该模型能够通过考虑正丁烷同位素之间的反应性差异来量化选择性 C-H 键断裂的动力学参数。通过分析,我们估计在 TPRS 过程中反应的正丁烷分子中有 49%是通过 1° C-H 键断裂反应的,此时正丁烷的初始覆盖率在分子前体状态的饱和覆盖率的 40%到 100%之间。对于零覆盖率下的解离,我们估计 1° C-H 键断裂的条件概率约等于 87%,并且从 300 K 到 400 K 随表面温度的变化仅略有变化。对温度依赖的速率数据的分析进一步预测,在零覆盖率下,正丁烷在 PdO(101)上解离时,1° C-H 键断裂的势垒比 2° C-H 键断裂的势垒低 3.5 kJ mol(-1)。我们的结果提供了证据,表明在 PdO(101)上,1° C-H 键断裂的选择性随着正丁烷覆盖率低于饱和值的 40%而增加。我们推测,在 PdO(101)上,正丁烷物种之间的分子间相互作用是导致正丁烷解离的 C-H 键选择性对覆盖率的依赖性的原因。