Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
J Neurosci. 2013 Apr 17;33(16):7066-78. doi: 10.1523/JNEUROSCI.5206-12.2013.
Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the peripheral and CNSs, which critically contribute to a variety of pathophysiological conditions that involve tissue acidosis, such as ischemic stroke and epileptic seizures. However, the trafficking mechanisms of ASICs and the related proteins remain largely unknown. Here, we demonstrate that ASIC1a, the main ASIC subunit in the brain, undergoes constitutive endocytosis in a clathrin- and dynamin-dependent manner in both mouse cortical neurons and heterologous cell cultures. The endocytosis of ASIC1a was inhibited by either the small molecular inhibitor tyrphostin A23 or knockdown of the core subunit of adaptor protein 2 (AP2) μ2 using RNA interference, supporting a clathrin-dependent endocytosis of ASIC1a. In addition, the internalization of ASIC1a was blocked by dominant-negative dynamin1 mutation K44A and the small molecular inhibitor dynasore, suggesting that it is also dynamin-dependent. We show that the membrane-proximal residues (465)LCRRG(469) at the cytoplasmic C terminus of ASIC1a are critical for interaction with the endogenous adaptor protein complex and inhibition of ASIC1a internalization strongly exacerbated acidosis-induced death of cortical neurons from wild-type but not ASIC1a knock-out mice. Together, these results reveal the molecular mechanism of ASIC1a internalization and suggest the importance of endocytic pathway in functional regulation of ASIC1a channels as well as neuronal damages mediated by these channels during neurodegeneration.
酸敏离子通道 (ASICs) 是一种质子门控阳离子通道,广泛表达于外周和中枢神经系统,对涉及组织酸中毒的多种病理生理状况(如缺血性中风和癫痫发作)有重要作用。然而,ASICs 的转运机制及其相关蛋白仍知之甚少。在这里,我们证明大脑中主要的 ASIC 亚基 ASIC1a 以网格蛋白和动力蛋白依赖的方式在小鼠皮质神经元和异源细胞培养物中持续发生内吞作用。小分子抑制剂 tyrphostin A23 或 RNA 干扰敲低衔接蛋白 2 (AP2) μ2 的核心亚基均可抑制 ASIC1a 的内吞作用,支持 ASIC1a 的网格蛋白依赖性内吞作用。此外,内吞作用被显性失活 dynamin1 突变 K44A 和小分子抑制剂 dynasore 阻断,表明它也是 dynamin 依赖性的。我们发现 ASIC1a 细胞质 C 末端的膜近端残基 (465)LCRRG(469) 对于与内源性衔接蛋白复合物相互作用以及抑制 ASIC1a 内吞作用至关重要,强烈抑制 ASIC1a 内吞作用会加剧野生型而非 ASIC1a 敲除小鼠皮质神经元酸中毒诱导的死亡。总之,这些结果揭示了 ASIC1a 内吞作用的分子机制,并表明内吞途径在 ASIC1a 通道的功能调节以及神经退行性变过程中这些通道介导的神经元损伤中的重要性。