School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 210017, China.
Neural Netw. 2013 Aug;44:132-42. doi: 10.1016/j.neunet.2013.03.016. Epub 2013 Mar 28.
This paper investigates a neural network modeled by a scalar delay differential equation. The focus is placed upon the Hopf bifurcation generated by varying the interaction parameter. A general expression for the periodic solutions arising from the Hopf bifurcation is obtained, and the direction of the bifurcation is also determined. Then, our results are tested in the two limits of small and large delays. For small delays, it is shown that a Hopf bifurcation to sinusoidal oscillations emerges as long as the interaction parameter is large enough (bifurcation from infinity) (Rosenblat & Davis, 1979). For large delays, it is pointed out that the oscillation progressively changes from sine to square-wave (Chow, Hale, & Huang, 1992; Hale & Huang, 1994). Moreover, a time delayed feedback control algorithm is introduced to generate the Hopf bifurcation at a desired bifurcation point for our neural network model. It is shown that the linear gain regulates the onset of the bifurcation, while the nonlinear gains govern the direction and the stability of the periodic solutions generated from the Hopf bifurcation.
本文研究了一个由标量时滞微分方程建模的神经网络。重点放在通过改变相互作用参数产生的 Hopf 分岔上。得到了由 Hopf 分岔产生的周期解的一般表达式,并确定了分岔的方向。然后,我们的结果在小延迟和大延迟的两个极限下进行了测试。对于小延迟,只要相互作用参数足够大(从无穷大的分岔)(Rosenblat 和 Davis,1979),就会出现到正弦振荡的 Hopf 分岔。对于大延迟,指出随着延迟时间的增加,振荡会逐渐从正弦波变为方波(Chow,Hale 和 Huang,1992;Hale 和 Huang,1994)。此外,还引入了一种时滞反馈控制算法,以便在我们的神经网络模型中在期望的分岔点产生 Hopf 分岔。结果表明,线性增益调节分岔的开始,而非线性增益则控制由 Hopf 分岔产生的周期解的方向和稳定性。