Institute of Chemistry, State University of Campinas - UNICAMP, PO Box 6154, 13083-970 Campinas, SP, Brazil.
Talanta. 2013 Jan 30;104:155-61. doi: 10.1016/j.talanta.2012.11.033. Epub 2012 Nov 23.
This work verifies the potential of support vector machine (SVM) algorithm applied to near infrared (NIR) spectroscopy data to develop multivariate calibration models for determination of biodiesel content in diesel fuel blends that are more effective and appropriate for analytical determinations of this type of fuel nowadays, providing the usual extended analytical range with required accuracy. Considering the difficulty to develop suitable models for this type of determination in an extended analytical range and that, in practice, biodiesel/diesel fuel blends are nowadays most often used between 0 and 30% (v/v) of biodiesel content, a calibration model is suggested for the range 0-35% (v/v) of biodiesel in diesel blends. The possibility of using a calibration model for the range 0-100% (v/v) of biodiesel in diesel fuel blends was also investigated and the difficulty in obtaining adequate results for this full analytical range is discussed. The SVM models are compared with those obtained with PLS models. The best result was obtained by the SVM model using the spectral region 4400-4600 cm(-1) providing the RMSEP value of 0.11% in 0-35% biodiesel content calibration model. This model provides the determination of biodiesel content in agreement with the accuracy required by ABNT NBR and ASTM reference methods and without interference due to the presence of vegetable oil in the mixture. The best SVM model fit performance for the relationship studied is also verified by providing similar prediction results with the use of 4400-6200 cm(-1) spectral range while the PLS results are much worse over this spectral region.
这项工作验证了支持向量机(SVM)算法应用于近红外(NIR)光谱数据的潜力,以开发多元校准模型,用于测定柴油燃料混合物中的生物柴油含量,这些模型对于当今分析此类燃料的测定更加有效和合适,提供了通常所需的扩展分析范围和精度。考虑到在扩展分析范围内为这种类型的测定开发合适模型的困难,并且实际上,生物柴油/柴油燃料混合物如今最常用于生物柴油含量的 0 至 30%(v/v)之间,因此建议为柴油混合物中的生物柴油 0-35%(v/v)范围内建立校准模型。还研究了在柴油燃料混合物中生物柴油的 0-100%(v/v)范围内使用校准模型的可能性,并讨论了在整个分析范围内获得足够结果的困难。将 SVM 模型与 PLS 模型获得的模型进行了比较。使用光谱区域 4400-4600 cm(-1) 的 SVM 模型获得了最佳结果,在 0-35%生物柴油含量校准模型中提供了 0.11%的 RMSEP 值。该模型提供了与 ABNT NBR 和 ASTM 参考方法所需的精度一致的生物柴油含量测定,并且由于混合物中存在植物油而没有干扰。还通过在使用 4400-6200 cm(-1) 光谱范围时提供类似的预测结果来验证最佳 SVM 模型对所研究关系的拟合性能,而 PLS 结果在该光谱区域内要差得多。