Filgueiras Paulo Roberto, Alves Júlio Cesar L, Poppi Ronei Jesus
Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
Talanta. 2014 Feb;119:582-9. doi: 10.1016/j.talanta.2013.11.056. Epub 2013 Nov 28.
In this work, multivariate calibration based on partial least squares (PLS) and support vector regression (SVR) using the whole spectrum and variable selection by synergy interval (siPLS and siSVR) were applied to NIR spectra for the determination of animal fat biodiesel content in soybean biodiesel and B20 diesel blends. For all models, prediction errors, bias test for systematic errors and permutation test for trends in the residuals were calculated. The siSVR produced significantly lower prediction errors compared to the full spectrum methods and siPLS, with a root mean squares error (RMSEP) of 0.18%(w/w) (concentration range: 0.00%-69.00%(w/w)) in the soybean biodiesel blend and 0.10%(w/w) in the B20 diesel (concentration range: 0.00%-13.80%(w/w)). Additionally, in the models for the determination of animal fat biodiesel in blends with soybean diesel, PLS and SVR showed evidence of systematic errors, and PLS/siPLS presented trends in residuals based on the permutation test. For the B20 diesel, PLS presented evidence of systematic errors, and siPLS presented trends in the residuals.
在本研究中,基于偏最小二乘法(PLS)和支持向量回归(SVR)的多元校准方法,利用全光谱以及通过协同区间进行变量选择(siPLS和siSVR),应用于近红外光谱,以测定大豆生物柴油和B20柴油混合物中动物脂肪生物柴油的含量。对于所有模型,计算了预测误差、系统误差的偏差检验以及残差趋势的排列检验。与全光谱方法和siPLS相比,siSVR产生的预测误差显著更低,在大豆生物柴油混合物中的均方根误差(RMSEP)为0.18%(w/w)(浓度范围:0.00% - 69.00%(w/w)),在B20柴油中的均方根误差为0.10%(w/w)(浓度范围:0.00% - 13.80%(w/w))。此外,在测定大豆柴油混合物中动物脂肪生物柴油的模型中,PLS和SVR显示出系统误差的迹象,并且基于排列检验,PLS/siPLS呈现出残差趋势。对于B20柴油,PLS显示出系统误差的迹象,而siPLS呈现出残差趋势。