Suppr超能文献

贝叶斯推断肺肺泡空间模型,以识别与急性呼吸窘迫综合征相关的肺泡力学。

Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome.

机构信息

Department of Surgery, University of Chicago, Chicago, IL 60637, USA.

出版信息

Phys Biol. 2013 Jun;10(3):036008. doi: 10.1088/1478-3975/10/3/036008. Epub 2013 Apr 18.

Abstract

Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the alveolar ducts. These two model solutions correspond to significantly different mechanical properties of the tissue, and we discuss the implications of these different properties and the requirements for new experimental data to discriminate between the hypotheses.

摘要

急性呼吸窘迫综合征(ARDS)是由严重全身炎症引起的急性肺衰竭,导致肺泡力学紊乱(即在潮气量通气过程中肺泡大小和形状的动态变化),导致肺泡不稳定,进而对肺实质造成进一步损伤。机械通气是治疗 ARDS 的主要方法,但可能会对不稳定的肺泡施加机械物理应力,这可能会反相传播加剧 ARDS 病理的细胞和分子过程。这种现象称为呼吸机引起的肺损伤(VILI),并在与 ARDS 相关的发病率和死亡率中起重要作用。为了确定最佳的通气策略来限制 VILI 并治疗 ARDS,有必要首先在肺泡水平,然后在整个肺水平上,了解 VILI 的生物学和物理机制之间的复杂相互作用。由于目前对于肺泡力学的潜在动力学尚无共识,因此作为初始步骤,我们使用肺肺泡空间模型(LASM)研究肺泡囊(AS)的通气动力学,这是 AS 及其与气流压力相互作用的 3D 空间生物力学表示以及肺表面活性剂的表面张力效应。我们使用 LASM 来确定与 ARDS 相关的肺泡动力学的机械后果。我们使用图形处理单元并行算法,使用控制和吐温诱导的 ARDS 条件下大鼠肺的实验数据对模型参数进行贝叶斯推断。我们的结果提供了两个合理的模型,它们概括了关于肺泡水平体积变化的两个基本假设:(1)通过各向同性体积变化增加肺泡大小,或(2)AS 口的主要扩张导致 AS 半径基本不变,其含义是呼吸周期中肺容积的大部分变化发生在肺泡导管中。这两种模型解决方案对应于组织的机械性能有显著差异,我们讨论了这些不同特性的含义以及需要新的实验数据来区分这些假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验