Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, Largo G. Gaslini 5, Genoa, Italy.
Am J Respir Cell Mol Biol. 2013 Sep;49(3):445-52. doi: 10.1165/rcmb.2012-0408OC.
In the respiratory system, Na(+) absorption and Cl(-) secretion are balanced to maintain an appropriate airway surface fluid (ASF) volume and ensure efficient mucociliary clearance. In cystic fibrosis (CF), this equilibrium is disrupted by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in the absence of functional CFTR-dependent Cl(-) secretion. The consequences of defective Cl(-) transport are worsened by the persistence of Na(+) absorption, which contributes to airway surface dehydration. We asked whether normal ASF can be restored to an equal extent by recovering Cl(-) secretion from mutated CFTR or by reducing Na(+) absorption. This is highly relevant in the selection of the best strategy for the treatment of patients with CF. We analyzed the ASF thickness of primary cultured bronchial CF and non-CF epithelia after silencing the epithelial Na(+) channel (ENaC) with specific short, interfering RNAs (siRNAs) and after the pharmacological stimulation of CFTR. Our results indicate that (1) single siRNAs complementary to ENaC subunits are sufficient to reduce ENaC transcripts, Na(+) channel activity, and fluid transport, but only silencing both the α and β ENaC subunits at the same time leads to an increase of ASF (from nearly 7 µm to more than 9 µm); (2) the ASF thickness obtained in this way is about half that measured after maximal CFTR stimulation in non-CF epithelia (10-14 µm); and (3) the pharmacological rescue of mutant CFTR increases the ASF to the same extent as ENaC silencing. Our results indicate that CFTR rescue and ENaC silencing both produce a significant and long-lasting increase of airway hydration in vitro.
在呼吸系统中,Na(+)吸收和 Cl(-)分泌保持平衡,以维持适当的气道表面液(ASF)体积,并确保有效的黏液纤毛清除。在囊性纤维化(CF)中,这种平衡被囊性纤维化跨膜电导调节因子(CFTR)基因突变打破,导致功能性 CFTR 依赖性 Cl(-)分泌缺失。由于 Na(+)吸收的持续存在,导致气道表面脱水,从而加剧了 Cl(-)转运缺陷的后果。我们想知道,通过恢复突变 CFTR 的 Cl(-)分泌或减少 Na(+)吸收,是否可以同等程度地恢复正常的 ASF。这在为 CF 患者选择最佳治疗策略方面非常重要。我们分析了用特定的短干扰 RNA(siRNA)沉默上皮 Na(+)通道(ENaC)后,以及用 CFTR 的药理学刺激后,原代培养的支气管 CF 和非 CF 上皮的 ASF 厚度。我们的结果表明:(1)与 ENaC 亚基互补的单链 siRNA 足以降低 ENaC 转录本、Na(+)通道活性和液体转运,但只有同时沉默 α 和 β ENaC 亚基才会导致 ASF 增加(从近 7 µm 增加到超过 9 µm);(2)以这种方式获得的 ASF 厚度约为非 CF 上皮中 CFTR 最大刺激后测量值的一半(10-14 µm);(3)突变 CFTR 的药理学恢复与 ENaC 沉默一样,可使 ASF 增加相同的程度。我们的结果表明,CFTR 恢复和 ENaC 沉默都可在体外显著且持久地增加气道水合作用。