Suppr超能文献

极性鞭毛细菌中鞭毛生物合成的空间和数量调节。

Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria.

机构信息

Departments of Medicine & Microbial Pathogenesis, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520-8022, USA.

出版信息

Mol Microbiol. 2013 May;88(4):655-63. doi: 10.1111/mmi.12221. Epub 2013 Apr 21.

Abstract

Control of surface organelle number and placement is a crucial aspect of the cell biology of many Gram-positive and Gram-negative bacteria, yet mechanistic insights into how bacteria spatially and numerically organize organelles are lacking. Many surface structures and internal complexes are spatially restricted in the bacterial cell (e.g. type IV pili, holdfasts, chemoreceptors), but perhaps none show so many distinct patterns in terms of number and localization as the flagellum. In this review, we discuss two proteins, FlhF and FlhG (also annotated FleN/YlxH), which control aspects of flagellar assembly, placement and number in polar flagellates, and may influence flagellation in some bacteria that produce peritrichous flagella. Experimental data obtained in a number of bacterial species suggest that these proteins may have acquired distinct attributes influencing flagellar assembly that reflect the diversity of flagellation patterns seen in different polar flagellates. Recent findings also suggest FlhF and FlhG are involved in other processes, such as influencing the rotation of flagella and proper cell division. Continued examination of these proteins in polar flagellates is expected to reveal how different bacteria have adapted FlhF or FlhG with specific activities to tailor flagellar biosynthesis and motility to fit the needs of each species.

摘要

控制表面细胞器的数量和位置是许多革兰氏阳性和革兰氏阴性细菌细胞生物学的关键方面,但对于细菌如何在空间和数量上组织细胞器的机制见解仍然缺乏。许多表面结构和内部复合物在细菌细胞中是空间受限的(例如,IV 型菌毛、固着器、化学感受器),但也许没有一种结构像鞭毛那样在数量和定位方面表现出如此多的不同模式。在这篇综述中,我们讨论了两种蛋白质,FlhF 和 FlhG(也注释为 FleN/YlxH),它们控制极性鞭毛生物中鞭毛组装、位置和数量的某些方面,并且可能影响一些产生周生鞭毛的细菌的鞭毛形成。在许多细菌物种中获得的实验数据表明,这些蛋白质可能具有影响鞭毛组装的独特属性,反映了不同极性鞭毛生物中所见的鞭毛形成模式的多样性。最近的发现还表明,FlhF 和 FlhG 参与其他过程,例如影响鞭毛的旋转和正确的细胞分裂。预计对这些极性鞭毛生物中的蛋白质的进一步研究将揭示不同细菌如何通过特定的活性来适应 FlhF 或 FlhG,以适应每个物种的需要来定制鞭毛生物合成和运动。

相似文献

1
Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria.
Mol Microbiol. 2013 May;88(4):655-63. doi: 10.1111/mmi.12221. Epub 2013 Apr 21.
4
5
Control of the flagellation pattern in by FlhF and FlhG.
J Bacteriol. 2023 Sep 26;205(9):e0011023. doi: 10.1128/jb.00110-23. Epub 2023 Sep 1.
7
An ATP-dependent partner switch links flagellar C-ring assembly with gene expression.
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20826-20835. doi: 10.1073/pnas.2006470117. Epub 2020 Aug 11.
8
Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus.
Microbiology (Reading). 2008 May;154(Pt 5):1390-1399. doi: 10.1099/mic.0.2007/012641-0.
9
Role of the major determinant of polar flagellation FlhG in the endoflagella-containing spirochete Leptospira.
Mol Microbiol. 2021 Nov;116(5):1392-1406. doi: 10.1111/mmi.14831. Epub 2021 Oct 30.
10
Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy.
J Bacteriol. 2005 Sep;187(18):6324-32. doi: 10.1128/JB.187.18.6324-6332.2005.

引用本文的文献

2
Nascent flagellar basal bodies are immobilized by rod assembly in .
mBio. 2025 Jun 11;16(6):e0053025. doi: 10.1128/mbio.00530-25. Epub 2025 May 21.
3
FlhG Cooperates With the Cell Cycle Regulator GpsB to Confine Peritrichous Flagella in B. subtilis.
Mol Microbiol. 2025 Aug;124(2):131-140. doi: 10.1111/mmi.15375. Epub 2025 May 19.
4
A conserved cell-pole determinant organizes proper polar flagellum formation.
Elife. 2024 Dec 5;13:RP93004. doi: 10.7554/eLife.93004.
5
Polar confinement of a macromolecular machine by an SRP-type GTPase.
Nat Commun. 2024 Jul 10;15(1):5797. doi: 10.1038/s41467-024-50274-4.
6
Structure of the GDP-bound state of the SRP GTPase FlhF.
Acta Crystallogr F Struct Biol Commun. 2024 Mar 1;80(Pt 3):53-58. doi: 10.1107/S2053230X24000979. Epub 2024 Feb 20.
7
Control of the flagellation pattern in by FlhF and FlhG.
J Bacteriol. 2023 Sep 26;205(9):e0011023. doi: 10.1128/jb.00110-23. Epub 2023 Sep 1.
8
DegS protease regulates the motility, chemotaxis, and colonization of .
Front Microbiol. 2023 Apr 5;14:1159986. doi: 10.3389/fmicb.2023.1159986. eCollection 2023.
9
FleQ, FleN and c-di-GMP coordinately regulate cellulose production in pv. tomato DC3000.
Front Mol Biosci. 2023 Mar 27;10:1155579. doi: 10.3389/fmolb.2023.1155579. eCollection 2023.
10
Transcriptional and functional characterizations of multiple flagellin genes in spirochetes.
Mol Microbiol. 2022 Sep;118(3):175-190. doi: 10.1111/mmi.14959. Epub 2022 Jul 18.

本文引用的文献

1
The GTPase activity of FlhF is dispensable for flagellar localization, but not motility, in Pseudomonas aeruginosa.
J Bacteriol. 2013 Mar;195(5):1051-60. doi: 10.1128/JB.02013-12. Epub 2012 Dec 21.
2
The cell biology of peritrichous flagella in Bacillus subtilis.
Mol Microbiol. 2013 Jan;87(1):211-29. doi: 10.1111/mmi.12103. Epub 2012 Dec 11.
3
The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature.
PLoS Pathog. 2012 Sep;8(9):e1002945. doi: 10.1371/journal.ppat.1002945. Epub 2012 Sep 27.
4
5
Structural basis for the molecular evolution of SRP-GTPase activation by protein.
Nat Struct Mol Biol. 2011 Nov 6;18(12):1376-80. doi: 10.1038/nsmb.2141.
6
A tale of two GTPases in cotranslational protein targeting.
Protein Sci. 2011 Nov;20(11):1790-5. doi: 10.1002/pro.729. Epub 2011 Sep 27.
7
Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176.
J Bacteriol. 2009 Nov;191(22):7086-93. doi: 10.1128/JB.00378-09. Epub 2009 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验