Suppr超能文献

单闪光后绿假单胞菌的延迟荧光。

Delayed fluorescence from Rhodopseudomonas viridis following single flashes.

作者信息

Carithers R P, Parson W W

出版信息

Biochim Biophys Acta. 1975 May 15;387(2):194-211. doi: 10.1016/0005-2728(75)90103-6.

Abstract

Delayed fluorescence from Rhodopseudomonas viridis membrane fragments has been studies using a phosphoroscope employing single, short actinic flashes, under conditions of controlled redox potential and temperature. The emission spectrum shows that delayed fluorescence is emitted by the bulk, antenna bacteriochlorophyll. The energy for delayed fluorescence, however, must be stored in a reaction-center complex including the photooxidized form (P+) of the primary electron-donor (P) and the photoreduced form (X MINUS) of the primary electron-acceptor. This is shown by the following observations: (1) Delayed luminescence is quenched (a) at low redox potentials which allow cytochromes to reduce P+ rapidly after the flash, (b) at higher redox potentials which, by oxidizing P chemically, prevent the photochemical formation of P+X minus, and (c) upon transfer of an electron from X minus to a secondary acceptor, Y. (2) Under conditions that prevent the reduction of P+ by cytochromes and the oxidation of X minus by Y, the decay kinetics of delayed fluorescence are identical with those of P+X minus, as measured from optical absorbance changes. The main decay route for P+X minus under these conditions has a rate-constant of approximately 10-3-s-minus 1. In contrase, a comparison of the intensities of delayed and prompt fluorescence indicates that the process in which P+X minus returns energy to the bulk bacteriochlorophyll has a rate-constant of 3.7 s-minus 1, at 295 degrees K and pH 7.8. The decay kinetics of P+X minus and delayed fluorescence change little with temperature, whereas the intensity of delayed fluorescence increases with increasing temperature, having an activation energy of 12.5 kcal mol-mol- minus 1. We conclude that the main decay route involves tunneling of an electron from X minus to P+, without the promotion of P to an excited state. Delayed fluorescence requires such a promotion, followed by transfer of energy to the bulk bacteriochlorophyll, and this combination of events is rare. The activation energy, taken with potentiometric data, indicates that the photochemical conversion of PX to P+X minus results in increases of both the energy and the entropy of the system, by 16.6 kcal-mol- minus 1 and 8.8 cal-mol- minus 1-deg- minus 1. The intensity of delayed fluorescence depends strongly on the pH; the origin of this effect remains unclear.

摘要

利用一台采用单次短光化闪光的磷光计,在可控的氧化还原电位和温度条件下,对绿假单胞菌膜片段的延迟荧光进行了研究。发射光谱表明,延迟荧光是由整体的天线细菌叶绿素发出的。然而,延迟荧光的能量必须存储在一个反应中心复合物中,该复合物包括初级电子供体(P)的光氧化形式(P+)和初级电子受体的光还原形式(X-)。以下观察结果表明了这一点:(1)延迟发光在以下情况下会被淬灭:(a)在低氧化还原电位下,闪光后细胞色素能迅速将P+还原;(b)在较高氧化还原电位下,通过化学方式氧化P,阻止P+X-的光化学形成;(c)当电子从X-转移到次级受体Y时。(2)在防止细胞色素还原P+以及Y氧化X-的条件下,延迟荧光的衰减动力学与通过光吸收变化测量的P+X-的衰减动力学相同。在这些条件下,P+X-的主要衰减途径的速率常数约为10-3 s-1。相反,延迟荧光和即时荧光强度的比较表明,在295 K和pH 7.8时,P+X-将能量返回给整体细菌叶绿素的过程的速率常数为3.7 s-1。P+X-和延迟荧光的衰减动力学随温度变化不大,而延迟荧光的强度随温度升高而增加,活化能为12.5 kcal mol-1。我们得出结论,主要衰减途径涉及电子从X-隧穿到P+,而不将P激发到激发态。延迟荧光需要这样的激发,随后能量转移到整体细菌叶绿素,而这种事件组合很少见。活化能与电位数据一起表明,PX光化学转化为P+X-会导致系统的能量和熵分别增加16.6 kcal mol-1和8.8 cal mol-1 deg-1。延迟荧光的强度强烈依赖于pH;这种效应的起源尚不清楚。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验