State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China.
Appl Environ Microbiol. 2013 Jul;79(13):4024-30. doi: 10.1128/AEM.00859-13. Epub 2013 Apr 19.
Muconic acid is the synthetic precursor of adipic acid, and the latter is an important platform chemical that can be used for the production of nylon-6,6 and polyurethane. Currently, the production of adipic acid relies mainly on chemical processes utilizing petrochemicals, such as benzene, which are generally considered environmentally unfriendly and nonrenewable, as starting materials. Microbial synthesis from renewable carbon sources provides a promising alternative under the circumstance of petroleum depletion and environment deterioration. Here we devised a novel artificial pathway in Escherichia coli for the biosynthesis of muconic acid, in which anthranilate, the first intermediate in the tryptophan biosynthetic branch, was converted to catechol and muconic acid by anthranilate 1,2-dioxygenase (ADO) and catechol 1,2-dioxygenase (CDO), sequentially and respectively. First, screening for efficient ADO and CDO from different microbial species enabled the production of gram-per-liter level muconic acid from supplemented anthranilate in 5 h. To further achieve the biosynthesis of muconic acid from simple carbon sources, anthranilate overproducers were constructed by overexpressing the key enzymes in the shikimate pathway and blocking tryptophan biosynthesis. In addition, we found that introduction of a strengthened glutamine regeneration system by overexpressing glutamine synthase significantly improved anthranilate production. Finally, the engineered E. coli strain carrying the full pathway produced 389.96 ± 12.46 mg/liter muconic acid from simple carbon sources in shake flask experiments, a result which demonstrates scale-up potential for microbial production of muconic acid.
黏康酸是己二酸的合成前体,后者是一种重要的平台化学品,可用于生产尼龙-6,6 和聚氨酯。目前,己二酸的生产主要依赖于利用苯等石化原料的化学工艺,这些原料通常被认为是不环保和不可再生的。在石油枯竭和环境恶化的情况下,微生物利用可再生碳源合成提供了一种很有前景的替代方法。在这里,我们在大肠杆菌中设计了一种新的人工途径来合成黏康酸,其中色氨酸生物合成分支的第一个中间体邻氨基苯甲酸,通过邻氨基苯甲酸 1,2-加氧酶(ADO)和儿茶酚 1,2-加氧酶(CDO),分别转化为儿茶酚和黏康酸。首先,从不同微生物物种中筛选出高效的 ADO 和 CDO,使补充邻氨基苯甲酸的大肠杆菌在 5 小时内生产出克级水平的黏康酸。为了进一步实现从简单碳源合成黏康酸,通过过表达莽草酸途径中的关键酶和阻断色氨酸生物合成,构建了邻氨基苯甲酸过量产生菌。此外,我们发现通过过表达谷氨酰胺合成酶引入强化的谷氨酰胺再生系统,可显著提高邻氨基苯甲酸的产量。最后,携带完整途径的工程大肠杆菌菌株在摇瓶实验中从简单碳源中生产了 389.96 ± 12.46mg/L 的黏康酸,这一结果表明了微生物黏康酸生产的扩大规模潜力。