Suppr超能文献

黑曲霉水杨酸羟化酶的发现与功能分析。

Discovery and Functional Analysis of a Salicylic Acid Hydroxylase from Aspergillus niger.

机构信息

Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.

Department of Microbiology, University of Helsinki, Helsinki, Finland.

出版信息

Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02701-20.

Abstract

Salicylic acid plays an important role in the plant immune response, and its degradation is therefore important for plant-pathogenic fungi. However, many nonpathogenic microorganisms can also degrade salicylic acid. In the filamentous fungus , two salicylic acid metabolic pathways have been suggested. The first pathway converts salicylic acid to catechol by a salicylate hydroxylase (ShyA). In the second pathway, salicylic acid is 3-hydroxylated to 2,3-dihydroxybenzoic acid, followed by decarboxylation to catechol by 2,3-dihydroxybenzoate decarboxylase (DhbA). cleaves the aromatic ring of catechol catalyzed by catechol 1,2-dioxygenase (CrcA) to form ,-muconic acid. However, the identification and role of the genes and characterization of the enzymes involved in these pathways are lacking. In this study, we used transcriptome data of grown on salicylic acid to identify genes ( and ) involved in salicylic acid metabolism. Heterologous production in followed by biochemical characterization confirmed the function of ShyA and CrcA. The combination of ShyA and CrcA demonstrated that -muconic acid can be produced from salicylic acid. In addition, the roles of , , and were studied by creating deletion mutants which revealed the role of these genes in the fungal metabolism of salicylic acid. Nonrenewable petroleum sources are being depleted, and therefore, alternative sources are needed. Plant biomass is one of the most abundant renewable sources on Earth and is efficiently degraded by fungi. In order to utilize plant biomass efficiently, knowledge about the fungal metabolic pathways and the genes and enzymes involved is essential to create efficient strategies for producing valuable compounds such as ,-muconic acid. ,-Muconic acid is an important platform chemical that is used to synthesize nylon, polyethylene terephthalate (PET), polyurethane, resins, and lubricants. Currently, ,-muconic acid is mainly produced through chemical synthesis from petroleum-based chemicals. Here, we show that two enzymes from fungi can be used to produce ,-muconic acid from salicylic acid and contributes in creating alternative methods for the production of platform chemicals.

摘要

水杨酸在植物免疫反应中起着重要作用,因此其降解对植物病原真菌很重要。然而,许多非致病微生物也可以降解水杨酸。在丝状真菌中,已经提出了两种水杨酸代谢途径。第一条途径通过水杨酸羟化酶(ShyA)将水杨酸转化为儿茶酚。在第二条途径中,水杨酸 3-羟基化为 2,3-二羟基苯甲酸,然后 2,3-二羟基苯甲酸脱羧酶(DhbA)将其脱羧为儿茶酚。儿茶酚 1,2-双加氧酶(CrcA)催化断裂儿茶酚的芳环,形成 -粘康酸。然而,这些途径中涉及的基因的鉴定和作用以及酶的表征尚不清楚。在这项研究中,我们使用在水杨酸上生长的转录组数据来鉴定参与水杨酸代谢的基因(和)。在 中的异源生产随后的生化特征证实了 ShyA 和 CrcA 的功能。ShyA 和 CrcA 的组合表明可以从水杨酸生产 -粘康酸。此外,通过创建 缺失突变体研究了 、 和 的 作用,这揭示了这些基因在真菌水杨酸代谢中的作用。不可再生的石油资源正在枯竭,因此需要替代资源。植物生物质是地球上最丰富的可再生资源之一,被真菌有效地降解。为了有效地利用植物生物质,了解真菌代谢途径以及相关的基因和酶对于创造生产有价值化合物(如 -粘康酸)的有效策略至关重要。-粘康酸是一种重要的平台化学品,用于合成尼龙、聚对苯二甲酸乙二醇酯(PET)、聚氨酯、树脂和润滑剂。目前,-粘康酸主要通过从石油化工产品的化学合成生产。在这里,我们展示了真菌中的两种酶可以用于从水杨酸生产 -粘康酸,并有助于创造生产平台化学品的替代方法。

相似文献

1
Discovery and Functional Analysis of a Salicylic Acid Hydroxylase from Aspergillus niger.
Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02701-20.
3
Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.
Appl Environ Microbiol. 2019 Nov 14;85(23). doi: 10.1128/AEM.01786-19. Print 2019 Dec 1.
4
Production of muconic acid in plants.
Metab Eng. 2018 Mar;46:13-19. doi: 10.1016/j.ymben.2018.02.002. Epub 2018 Feb 21.
5
Degradation of salicylic acid by Fusarium graminearum.
Fungal Biol. 2019 Jan;123(1):77-86. doi: 10.1016/j.funbio.2018.11.002. Epub 2018 Nov 17.
6
Degradation of benzoate & salicylate by Aspergillus niger.
Indian J Exp Biol. 1982 Feb;20(2):166-8.
7
New pathway for the biodegradation of indole in Aspergillus niger.
Appl Environ Microbiol. 1990 Jan;56(1):275-80. doi: 10.1128/aem.56.1.275-280.1990.
8
Engineering to produce -muconic acid from biomass aromatics.
Appl Environ Microbiol. 2024 Jan 24;90(1):e0166023. doi: 10.1128/aem.01660-23. Epub 2023 Dec 20.
9
Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.
Metab Eng. 2014 May;23:62-9. doi: 10.1016/j.ymben.2014.02.009. Epub 2014 Feb 25.

引用本文的文献

1
An Updated Perspective on the Aromatic Metabolic Pathways of Plant-Derived Homocyclic Aromatic Compounds in .
Microorganisms. 2025 Jul 22;13(8):1718. doi: 10.3390/microorganisms13081718.
3
Plants, fungi, and antifungals: A little less talk, a little more action.
PLoS Pathog. 2025 Aug 5;21(8):e1013395. doi: 10.1371/journal.ppat.1013395. eCollection 2025 Aug.
7
Phenanthrene degradation by a flavoprotein monooxygenase from .
Appl Environ Microbiol. 2025 Mar 19;91(3):e0157424. doi: 10.1128/aem.01574-24. Epub 2025 Feb 3.
8
Metabolic mechanism of lignin-derived aromatics in white-rot fungi.
Appl Microbiol Biotechnol. 2024 Dec 11;108(1):532. doi: 10.1007/s00253-024-13371-4.
9
Filamentous fungi as emerging cell factories for the production of aromatic compounds.
Fungal Biol Biotechnol. 2024 Nov 14;11(1):19. doi: 10.1186/s40694-024-00188-z.
10
Global mRNA profiling reveals the effect of boron as a crop protection tool against .
AoB Plants. 2024 Sep 26;16(6):plae056. doi: 10.1093/aobpla/plae056. eCollection 2024 Dec.

本文引用的文献

1
Cinnamic Acid and Sorbic acid Conversion Are Mediated by the Same Transcriptional Regulator in .
Front Bioeng Biotechnol. 2019 Sep 27;7:249. doi: 10.3389/fbioe.2019.00249. eCollection 2019.
2
Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.
Appl Environ Microbiol. 2019 Nov 14;85(23). doi: 10.1128/AEM.01786-19. Print 2019 Dec 1.
3
Recent advances in the genome mining of secondary metabolites (covering 2012-2018).
Medchemcomm. 2019 Apr 26;10(6):840-866. doi: 10.1039/c9md00054b. eCollection 2019 Jun 1.
4
A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi.
Biotechnol Adv. 2019 Nov 15;37(7):107396. doi: 10.1016/j.biotechadv.2019.05.002. Epub 2019 May 7.
6
Characterization of a Salicylate Hydroxylase.
Front Microbiol. 2019 Jan 8;9:3219. doi: 10.3389/fmicb.2018.03219. eCollection 2018.
7
Degradation of salicylic acid by Fusarium graminearum.
Fungal Biol. 2019 Jan;123(1):77-86. doi: 10.1016/j.funbio.2018.11.002. Epub 2018 Nov 17.
8
From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida.
Metab Eng. 2018 May;47:279-293. doi: 10.1016/j.ymben.2018.03.003. Epub 2018 Mar 14.
10
Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin.
Sci Rep. 2017 Sep 27;7(1):12356. doi: 10.1038/s41598-017-12362-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验