Suppr超能文献

在泥炭提取物中生长后,根瘤菌的生理变化可能与提高耐旱性有关。

Physiological changes in rhizobia after growth in peat extract may be related to improved desiccation tolerance.

机构信息

Faculty of Agriculture and Environment, University of Sydney, Sydney, New South Wales, Australia.

出版信息

Appl Environ Microbiol. 2013 Jul;79(13):3998-4007. doi: 10.1128/AEM.00082-13. Epub 2013 Apr 19.

Abstract

Improved survival of peat-cultured rhizobia compared to survival of liquid-cultured cells has been attributed to cellular adaptations during solid-state fermentation in moist peat. We have observed improved desiccation tolerance of Rhizobium leguminosarum bv. trifolii TA1 and Bradyrhizobium japonicum CB1809 after aerobic growth in water extracts of peat. Survival of TA1 grown in crude peat extract was 18-fold greater than that of cells grown in a defined liquid medium but was diminished when cells were grown in different-sized colloidal fractions of peat extract. Survival of CB1809 was generally better when grown in crude peat extract than in the control but was not statistically significant (P > 0.05) and was strongly dependent on peat extract concentration. Accumulation of intracellular trehalose by both TA1 and CB1809 was higher after growth in peat extract than in the defined medium control. Cells grown in water extracts of peat exhibit morphological changes similar to those observed after growth in moist peat. Electron microscopy revealed thickened plasma membranes, with an electron-dense material occupying the periplasmic space in both TA1 and CB1809. Growth in peat extract also resulted in changes to polypeptide expression in both strains, and peptide analysis by liquid chromatography-mass spectrometry indicated increased expression of stress response proteins. Our results suggest that increased capacity for desiccation tolerance in rhizobia is multifactorial, involving the accumulation of trehalose together with increased expression of proteins involved in protection of the cell envelope, repair of DNA damage, oxidative stress responses, and maintenance of stability and integrity of proteins.

摘要

与液体培养细胞相比,在湿润的泥炭中进行固态发酵时,培养的根瘤菌的存活率有所提高,这归因于细胞的适应性。我们观察到,在泥炭的水提取物中进行好氧生长后,苜蓿根瘤菌 bv. trifolii TA1 和日本根瘤菌 CB1809 的干燥耐受性得到改善。在粗泥炭提取物中生长的 TA1 的存活率比在定义的液体培养基中生长的细胞高 18 倍,但当细胞在不同大小的泥炭提取物胶体部分中生长时,存活率降低。与对照相比,CB1809 在粗泥炭提取物中生长时通常具有更好的存活率,但差异不具有统计学意义(P>0.05),并且强烈依赖于泥炭提取物的浓度。在泥炭提取物中生长后,TA1 和 CB1809 的细胞内海藻糖积累量均高于在定义的培养基对照中。在泥炭的水提取物中生长的细胞表现出与在湿润的泥炭中生长时相似的形态变化。电子显微镜显示,TA1 和 CB1809 的质膜变厚,在周质空间中存在电子致密物质。在泥炭提取物中生长也导致两种菌株的多肽表达发生变化,通过液相色谱-质谱分析表明应激反应蛋白的表达增加。我们的结果表明,根瘤菌干燥耐受性的提高是多因素的,涉及海藻糖的积累以及参与保护细胞包膜、修复 DNA 损伤、氧化应激反应以及维持蛋白质稳定性和完整性的蛋白质的表达增加。

相似文献

1
Physiological changes in rhizobia after growth in peat extract may be related to improved desiccation tolerance.
Appl Environ Microbiol. 2013 Jul;79(13):3998-4007. doi: 10.1128/AEM.00082-13. Epub 2013 Apr 19.
2
Aqueous peat extract exposes rhizobia to sub-lethal stress which may prime cells for improved desiccation tolerance.
Appl Microbiol Biotechnol. 2018 Sep;102(17):7521-7539. doi: 10.1007/s00253-018-9086-2. Epub 2018 Jun 23.
3
Morphological changes of rhizobia in peat cultures.
Appl Environ Microbiol. 2002 Mar;68(3):1064-70. doi: 10.1128/AEM.68.3.1064-1070.2002.
4
Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress.
J Bacteriol. 2007 Oct;189(19):6751-62. doi: 10.1128/JB.00533-07. Epub 2007 Jul 27.
5
Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation.
J Appl Microbiol. 2003;95(3):484-91. doi: 10.1046/j.1365-2672.2003.02017.x.
6
Microencapsulation of Rhizobium leguminosarum bv. trifolii with guar gum: Preliminary approach using spray drying.
J Biotechnol. 2019 Aug 20;302:32-41. doi: 10.1016/j.jbiotec.2019.06.007. Epub 2019 Jun 12.
7
Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance.
Appl Environ Microbiol. 2007 Jun;73(12):3984-92. doi: 10.1128/AEM.00412-07. Epub 2007 Apr 20.

引用本文的文献

1
Development of a Rhizobium Seed Coating to Establish Lupine Species on Degraded Rangelands.
Plants (Basel). 2024 Jul 29;13(15):2101. doi: 10.3390/plants13152101.
2
Effects of sublethal stress application on the survival of bacterial inoculants: a systematic review.
Arch Microbiol. 2023 Apr 13;205(5):190. doi: 10.1007/s00203-023-03542-8.
3
Potential of desiccation-tolerant plant growth-promoting rhizobacteria in growth augmentation of wheat ( L.) under drought stress.
Front Microbiol. 2023 Feb 8;14:1017167. doi: 10.3389/fmicb.2023.1017167. eCollection 2023.
4
Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants.
Microb Biotechnol. 2018 Mar;11(2):277-301. doi: 10.1111/1751-7915.12880. Epub 2017 Dec 4.
5
Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.
PLoS One. 2017 Nov 8;12(11):e0187913. doi: 10.1371/journal.pone.0187913. eCollection 2017.
6
Microbial inoculation of seed for improved crop performance: issues and opportunities.
Appl Microbiol Biotechnol. 2016 Jul;100(13):5729-46. doi: 10.1007/s00253-016-7590-9. Epub 2016 May 17.

本文引用的文献

1
Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841.
FEMS Microbiol Ecol. 2010 Mar;71(3):327-40. doi: 10.1111/j.1574-6941.2009.00824.x. Epub 2009 Dec 2.
2
Poly-beta-hydroxybutyrate production by fast-growing rhizobia cultivated in sludge and in industrial wastewater.
Appl Biochem Biotechnol. 2009 Jul;158(1):155-63. doi: 10.1007/s12010-008-8358-1. Epub 2008 Sep 16.
3
PspA can form large scaffolds in Escherichia coli.
FEBS Lett. 2008 Oct 29;582(25-26):3585-9. doi: 10.1016/j.febslet.2008.09.002. Epub 2008 Oct 10.
4
Preservation of membranes in anhydrobiotic organisms: the role of trehalose.
Science. 1984 Feb 17;223(4637):701-3. doi: 10.1126/science.223.4637.701.
5
Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes.
Mol Microbiol. 2007 Oct;66(1):100-9. doi: 10.1111/j.1365-2958.2007.05893.x. Epub 2007 Aug 28.
6
Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress.
J Bacteriol. 2007 Oct;189(19):6751-62. doi: 10.1128/JB.00533-07. Epub 2007 Jul 27.
7
Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance.
Appl Environ Microbiol. 2007 Jun;73(12):3984-92. doi: 10.1128/AEM.00412-07. Epub 2007 Apr 20.
8
Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature.
Appl Environ Microbiol. 2007 Jun;73(11):3451-9. doi: 10.1128/AEM.02991-06. Epub 2007 Mar 30.
9
Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis.
J Exp Bot. 2006;57(8):1769-76. doi: 10.1093/jxb/erj184. Epub 2006 May 12.
10
Ionic Stress and Osmotic Pressure Induce Different Alterations in the Lipopolysaccharide of a Rhizobium meliloti Strain.
Appl Environ Microbiol. 1995 Oct;61(10):3701-4. doi: 10.1128/aem.61.10.3701-3704.1995.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验