Suppr超能文献

大肠杆菌 ExbB 跨膜结构域的突变鉴定了支架和信号转导功能,并排除了其参与质子途径的可能性。

Mutations in Escherichia coli ExbB transmembrane domains identify scaffolding and signal transduction functions and exclude participation in a proton pathway.

机构信息

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.

出版信息

J Bacteriol. 2013 Jun;195(12):2898-911. doi: 10.1128/JB.00017-13. Epub 2013 Apr 19.

Abstract

The TonB system couples cytoplasmic membrane proton motive force (pmf) to active transport of diverse nutrients across the outer membrane. Current data suggest that cytoplasmic membrane proteins ExbB and ExbD harness pmf energy. Transmembrane domain (TMD) interactions between TonB and ExbD allow the ExbD C terminus to modulate conformational rearrangements of the periplasmic TonB C terminus in vivo. These conformational changes somehow allow energization of high-affinity TonB-gated transporters by direct interaction with TonB. While ExbB is essential for energy transduction, its role is not well understood. ExbB has N-terminus-out, C-terminus-in topology with three TMDs. TMDs 1 and 2 are punctuated by a cytoplasmic loop, with the C-terminal tail also occupying the cytoplasm. We tested the hypothesis that ExbB TMD residues play roles in proton translocation. Reassessment of TMD boundaries based on hydrophobic character and residue conservation among distantly related ExbB proteins brought earlier widely divergent predictions into congruence. All TMD residues with potentially function-specific side chains (Lys, Cys, Ser, Thr, Tyr, Glu, and Asn) and residues with probable structure-specific side chains (Trp, Gly, and Pro) were substituted with Ala and evaluated in multiple assays. While all three TMDs were essential, they had different roles: TMD1 was a region through which ExbB interacted with the TonB TMD. TMD2 and TMD3, the most conserved among the ExbB/TolQ/MotA/PomA family, played roles in signal transduction between cytoplasm and periplasm and the transition from ExbB homodimers to homotetramers. Consideration of combined data excludes ExbB TMD residues from direct participation in a proton pathway.

摘要

TonB 系统将细胞质膜质子动力势 (pmf) 与多种营养物质穿过外膜的主动运输耦合。目前的数据表明,细胞质膜蛋白 ExbB 和 ExbD 利用 pmf 能量。TonB 和 ExbD 之间的跨膜结构域 (TMD) 相互作用允许 ExbD C 末端在体内调节周质 TonB C 末端的构象重排。这些构象变化以某种方式允许通过与 TonB 的直接相互作用来激活高亲和力 TonB 门控转运体。虽然 ExbB 对于能量转导是必不可少的,但它的作用尚不清楚。ExbB 具有 N 端向外、C 端向内的拓扑结构,具有三个 TMD。TMD1 和 TMD2 被细胞质环打断,C 末端尾巴也占据细胞质。我们测试了 ExbB TMD 残基在质子转运中起作用的假设。基于疏水性和远缘 ExbB 蛋白之间的残基保守性重新评估 TMD 边界,使早期广泛分歧的预测趋于一致。具有潜在功能特异性侧链的所有 TMD 残基(Lys、Cys、Ser、Thr、Tyr、Glu 和 Asn)和具有可能结构特异性侧链的残基(Trp、Gly 和 Pro)均被 Ala 取代,并在多种测定中进行了评估。虽然所有三个 TMD 都是必需的,但它们具有不同的作用:TMD1 是 ExbB 与 TonB TMD 相互作用的区域。TMD2 和 TMD3 在 ExbB/TolQ/MotA/PomA 家族中最保守,在细胞质和周质之间的信号转导以及 ExbB 同源二聚体向同源四聚体的转变中发挥作用。综合数据的考虑排除了 ExbB TMD 残基直接参与质子途径。

相似文献

2
The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization.
J Bacteriol. 2012 Jun;194(12):3069-77. doi: 10.1128/JB.00015-12. Epub 2012 Apr 6.
4
His(20) provides the sole functionally significant side chain in the essential TonB transmembrane domain.
J Bacteriol. 2007 Apr;189(7):2825-33. doi: 10.1128/JB.01925-06. Epub 2007 Feb 2.
5
The Intrinsically Disordered Region of ExbD Is Required for Signal Transduction.
J Bacteriol. 2020 Mar 11;202(7). doi: 10.1128/JB.00687-19.
6
Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo.
J Bacteriol. 2012 Jun;194(12):3078-87. doi: 10.1128/JB.00018-12. Epub 2012 Apr 6.
7
ExbB cytoplasmic loop deletions cause immediate, proton motive force-independent growth arrest.
J Bacteriol. 2013 Oct;195(20):4580-91. doi: 10.1128/JB.00334-13. Epub 2013 Aug 2.
8
The same periplasmic ExbD residues mediate in vivo interactions between ExbD homodimers and ExbD-TonB heterodimers.
J Bacteriol. 2011 Dec;193(24):6852-63. doi: 10.1128/JB.06190-11. Epub 2011 Oct 7.
9
ExbD mutants define initial stages in TonB energization.
J Mol Biol. 2012 Jan 13;415(2):237-47. doi: 10.1016/j.jmb.2011.11.005. Epub 2011 Nov 9.
10
Cytoplasmic membrane protonmotive force energizes periplasmic interactions between ExbD and TonB.
Mol Microbiol. 2009 Aug;73(3):466-81. doi: 10.1111/j.1365-2958.2009.06785.x. Epub 2009 Jul 16.

引用本文的文献

1
Cryo-EM structures of the E. coli Ton and Tol motor complexes.
Nat Commun. 2025 Jul 1;16(1):5506. doi: 10.1038/s41467-025-61286-z.
2
Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor.
J Bacteriol. 2023 Jun 27;205(6):e0003523. doi: 10.1128/jb.00035-23. Epub 2023 May 23.
4
Structure and Stoichiometry of the Ton Molecular Motor.
Int J Mol Sci. 2020 Jan 7;21(2):375. doi: 10.3390/ijms21020375.
5
The Intrinsically Disordered Region of ExbD Is Required for Signal Transduction.
J Bacteriol. 2020 Mar 11;202(7). doi: 10.1128/JB.00687-19.
7
Hexameric and pentameric complexes of the ExbBD energizer in the Ton system.
Elife. 2018 Apr 17;7:e35419. doi: 10.7554/eLife.35419.
8
Going Outside the TonB Box: Identification of Novel FepA-TonB Interactions .
J Bacteriol. 2017 Apr 25;199(10). doi: 10.1128/JB.00649-16. Print 2017 May 15.
9
Water Disinfection Byproducts Induce Antibiotic Resistance-Role of Environmental Pollutants in Resistance Phenomena.
Environ Sci Technol. 2016 Mar 15;50(6):3193-201. doi: 10.1021/acs.est.5b05113. Epub 2016 Feb 29.
10
From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle.
J Bacteriol. 2015 Nov;197(21):3433-45. doi: 10.1128/JB.00484-15. Epub 2015 Aug 17.

本文引用的文献

1
Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16696-701. doi: 10.1073/pnas.1210093109. Epub 2012 Sep 24.
2
The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization.
J Bacteriol. 2012 Jun;194(12):3069-77. doi: 10.1128/JB.00015-12. Epub 2012 Apr 6.
3
Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo.
J Bacteriol. 2012 Jun;194(12):3078-87. doi: 10.1128/JB.00018-12. Epub 2012 Apr 6.
4
ExbD mutants define initial stages in TonB energization.
J Mol Biol. 2012 Jan 13;415(2):237-47. doi: 10.1016/j.jmb.2011.11.005. Epub 2011 Nov 9.
5
Death of the TonB Shuttle Hypothesis.
Front Microbiol. 2011 Oct 12;2:206. doi: 10.3389/fmicb.2011.00206. eCollection 2011.
6
The same periplasmic ExbD residues mediate in vivo interactions between ExbD homodimers and ExbD-TonB heterodimers.
J Bacteriol. 2011 Dec;193(24):6852-63. doi: 10.1128/JB.06190-11. Epub 2011 Oct 7.
7
Sodium-driven motor of the polar flagellum in marine bacteria Vibrio.
Genes Cells. 2011 Oct;16(10):985-99. doi: 10.1111/j.1365-2443.2011.01545.x. Epub 2011 Sep 5.
9
TonB-Dependent Transporters Expressed by Neisseria gonorrhoeae.
Front Microbiol. 2011 May 27;2:117. doi: 10.3389/fmicb.2011.00117. eCollection 2011.
10
Taking the Escherichia coli TonB transmembrane domain "offline"? Nonprotonatable Asn substitutes fully for TonB His20.
J Bacteriol. 2011 Aug;193(15):3693-701. doi: 10.1128/JB.05219-11. Epub 2011 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验