Gresock Michael G, Postle Kathleen
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
J Bacteriol. 2017 Apr 25;199(10). doi: 10.1128/JB.00649-16. Print 2017 May 15.
In Gram-negative bacteria, the cytoplasmic membrane protein TonB transmits energy derived from proton motive force to energize transport of important nutrients through TonB-dependent transporters in the outer membrane. Each transporter consists of a beta barrel domain and a lumen-occluding cork domain containing an essential sequence called the TonB box. To date, the only identified site of transporter-TonB interaction is between the TonB box and residues ∼158 to 162 of TonB. While the mechanism of ligand transport is a mystery, a current model based on site-directed spin labeling and molecular dynamics simulations is that, following ligand binding, the otherwise-sequestered TonB box extends into the periplasm for recognition by TonB, which mediates transport by pulling or twisting the cork. In this study, we tested that hypothesis with the outer membrane transporter FepA using photo-cross-linking to explore interactions of its TonB box and determine whether additional FepA-TonB interaction sites exist. We found numerous specific sites of FepA interaction with TonB on the periplasmic face of the FepA cork in addition to the TonB box. Two residues, T32 and A33, might constitute a ligand-sensitive conformational switch. The facts that some interactions were enhanced in the absence of ligand and that other interactions did not require the TonB box argued against the current model and suggested that the transport process is more complex than originally conceived, with subtleties that might provide a mechanism for discrimination among ligand-loaded transporters. These results constitute the first study on the dynamics of TonB-gated transporter interaction with TonB The TonB system of Gram-negative bacteria has a noncanonical active transport mechanism involving signal transduction and proteins integral to both membranes. To achieve transport, the cytoplasmic membrane protein TonB physically contacts outer membrane transporters such as FepA. Only one contact between TonB and outer membrane transporters has been identified to date: the TonB box at the transporter amino terminus. The TonB box has low information content, raising the question of how TonB can discriminate among multiple different TonB-dependent transporters present in the bacterium if it is the only means of contact. Here we identified several additional sites through which FepA contacts TonB , including two neighboring residues that may explain how FepA signals to TonB that ligand has bound.
在革兰氏阴性菌中,细胞质膜蛋白托蛋白B(TonB)传递源自质子动力的能量,以驱动重要营养物质通过外膜中依赖托蛋白B的转运蛋白进行转运。每个转运蛋白由一个β桶结构域和一个封闭管腔的塞子结构域组成,塞子结构域包含一个名为托蛋白B框的必需序列。迄今为止,唯一确定的转运蛋白与托蛋白B的相互作用位点位于托蛋白B框与托蛋白B的约158至162位残基之间。虽然配体转运的机制仍是个谜,但基于定点自旋标记和分子动力学模拟的当前模型认为,在配体结合后,原本被隔离的托蛋白B框会延伸到周质中以供托蛋白B识别,托蛋白B通过拉动或扭曲塞子来介导转运。在本研究中,我们使用光交联技术以外膜转运蛋白FepA检验了该假设,以探索其托蛋白B框的相互作用,并确定是否存在其他FepA-托蛋白B相互作用位点。我们发现,除了托蛋白B框外,在FepA塞子的周质面上还有许多FepA与托蛋白B相互作用的特定位点。两个残基T32和A33可能构成一个配体敏感的构象开关。一些相互作用在没有配体时增强以及其他相互作用不需要托蛋白B框这一事实与当前模型相悖,并表明转运过程比最初设想的更为复杂,其中的微妙之处可能提供了一种区分负载配体的转运蛋白的机制。这些结果构成了对托蛋白B门控转运蛋白与托蛋白B相互作用动力学的首次研究。革兰氏阴性菌的托蛋白B系统具有一种非经典的主动转运机制,涉及信号转导和整合到两个膜中的蛋白质。为了实现转运,细胞质膜蛋白托蛋白B与外膜转运蛋白如FepA进行物理接触。迄今为止,已确定托蛋白B与外膜转运蛋白之间只有一个接触位点:转运蛋白氨基末端的托蛋白B框。托蛋白B框的信息含量较低,这就提出了一个问题,如果它是唯一的接触方式,托蛋白B如何区分细菌中存在的多种不同的依赖托蛋白B的转运蛋白。在这里,我们确定了FepA与托蛋白B接触的几个其他位点,包括两个相邻残基,它们可能解释FepA如何向托蛋白B发出配体已结合的信号。