Suppr超能文献

小麦品种在末期热胁迫下的比较生理响应。

Comparative physiological response of wheat genotypes under terminal heat stress.

机构信息

Department of Plant Physiology; Department of Agronomy; G. B. Pant University of Agriculture and Technology; Uttaranchal, India.

出版信息

Plant Signal Behav. 2013 Jun;8(6):e24564. doi: 10.4161/psb.24564. Epub 2013 Apr 12.

Abstract

Wheat (Triticum aestivum L.), a staple food crop, is of great commercial importance. Its production is restricted due to multiple environmental stresses. There are indications that the wheat production is consistently limited by terminal heat stress. Previous studies revealed a varied response of different wheat genotypes under heat stress conditions. Here, comparative physiological changes in wheat genotypes viz., DBW-140, Raj-3765, PBW-574, K-0-307 and HS-240 were evaluated under timely and late sown conditions in rabi season. We observed that heat stress dramatically affects chlorophyll content and leaf area index (LAI) in sensitive genotypes whereas proline and malondialdehyde (MDA) content were higher in tolerant genotypes under late sown conditions. Further, the heat susceptibility index (HIS) for 1,000-grain weight, grain weight and grain yield of wheat genotypes viz., HS 240 and K-0-307 was highest as compared with DBW 140, Raj 3765 and PBW 574 genotypes. This finding suggests that wheat genotypes are found to differ in their ability to respond to heat, thereby tolerance, which could be useful as genetic stock to develop wheat tolerant varieties in breeding programs.

摘要

小麦(Triticum aestivum L.)是一种重要的粮食作物,具有重要的商业价值。它的生产受到多种环境胁迫的限制。有迹象表明,小麦的生产一直受到末期热胁迫的限制。先前的研究表明,不同小麦基因型在热胁迫条件下的反应各不相同。本研究在冬小麦季节适时和晚播条件下,对小麦基因型 DBW-140、Raj-3765、PBW-574、K-0-307 和 HS-240 进行了比较生理变化的评估。我们观察到,热胁迫对敏感基因型的叶绿素含量和叶面积指数(LAI)有显著影响,而在晚播条件下,耐受基因型的脯氨酸和丙二醛(MDA)含量较高。此外,HS 240 和 K-0-307 两种基因型的千粒重、粒重和产量的热敏感指数(HIS)明显高于 DBW 140、Raj 3765 和 PBW 574 基因型。这一发现表明,小麦基因型在应对热胁迫的能力上存在差异,从而具有耐受性,这可能有助于在育种计划中开发小麦耐品种的遗传资源。

相似文献

1
Comparative physiological response of wheat genotypes under terminal heat stress.
Plant Signal Behav. 2013 Jun;8(6):e24564. doi: 10.4161/psb.24564. Epub 2013 Apr 12.
2
Phenotypic, Physiological and Biochemical Delineation of Wheat Genotypes Under Different Stress Conditions.
Biochem Genet. 2024 Oct;62(5):3305-3335. doi: 10.1007/s10528-023-10579-3. Epub 2023 Dec 15.
3
AMMI and GGE biplot analysis of yield under terminal heat tolerance in wheat.
Mol Biol Rep. 2023 Apr;50(4):3459-3467. doi: 10.1007/s11033-023-08298-4. Epub 2023 Feb 9.
4
Mapping QTLs for grain yield components in wheat under heat stress.
PLoS One. 2017 Dec 19;12(12):e0189594. doi: 10.1371/journal.pone.0189594. eCollection 2017.
9
Physiological traits associated with heat tolerance in bread wheat (Triticum aestivum L.).
Physiol Mol Biol Plants. 2015 Jan;21(1):93-9. doi: 10.1007/s12298-014-0267-x. Epub 2014 Oct 23.
10
Genetic variation for terminal heat stress tolerance in winter wheat.
Front Plant Sci. 2023 Feb 22;14:1132108. doi: 10.3389/fpls.2023.1132108. eCollection 2023.

引用本文的文献

4
Physio-biochemical characterization of wheat genotypes under temperature stress.
Physiol Mol Biol Plants. 2023 Jan;29(1):131-143. doi: 10.1007/s12298-022-01267-4. Epub 2022 Dec 26.
5
Strengthening leaf physiological functioning and grain yield formation in heat-stressed wheat through potassium application.
Front Plant Sci. 2022 Oct 5;13:1005773. doi: 10.3389/fpls.2022.1005773. eCollection 2022.
7
Characterization of contrasting genotypes reveals general physiological and molecular mechanisms of heat-stress adaptation in maize ().
Physiol Mol Biol Plants. 2020 May;26(5):921-929. doi: 10.1007/s12298-020-00801-6. Epub 2020 Apr 18.
8
Identification of High-Temperature Tolerant Lentil ( Medik.) Genotypes through Leaf and Pollen Traits.
Front Plant Sci. 2017 May 19;8:744. doi: 10.3389/fpls.2017.00744. eCollection 2017.
9
Response of spring wheat (Triticum aestivum L.) quality traits and yield to sowing date.
PLoS One. 2015 Apr 30;10(4):e0126097. doi: 10.1371/journal.pone.0126097. eCollection 2015.

本文引用的文献

1
Response of Aegilops species to drought stress during reproductive stages of development.
Funct Plant Biol. 2012 Feb;39(1):51-59. doi: 10.1071/FP11171.
2
Protective role of antioxidant enzymes under high temperature stress.
Plant Sci. 2006 Sep;171(3):382-8. doi: 10.1016/j.plantsci.2006.04.009. Epub 2006 May 30.
5
Proline accumulation and the adaptation of cultured plant cells to water stress.
Plant Physiol. 1986 Apr;80(4):938-45. doi: 10.1104/pp.80.4.938.
6
Superoxide dismutases: I. Occurrence in higher plants.
Plant Physiol. 1977 Feb;59(2):309-14. doi: 10.1104/pp.59.2.309.
7
Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants.
Plant Biol (Stuttg). 2004 May;6(3):269-79. doi: 10.1055/s-2004-820867.
9
Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation.
Arch Biochem Biophys. 1968 Apr;125(1):189-98. doi: 10.1016/0003-9861(68)90654-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验