Institut für Arbeitsphysiologie an der Universität Dortmund (IfADo), Ardeystr. 67, D-44139, Dortmund,
Mycotoxin Res. 2005 Mar;21(1):57-60. doi: 10.1007/BF02954819.
Despite good evidence for a genotoxic potential of ochratoxin A (OTA), the mechanism of OTA-induced genotoxicity (direct or indirect?) is still unclear. This calls for a further characterization of OTA-related DNA damage, and investigations of factors that may modulate dose-effect relationships in cells.Since bladder epithelium is a target tissue for the toxicity of OTA, its effects were studied in cultures of human bladder carcinoma (H5637) cells. Cytotoxicity of OTA, assessed by Neutral red (NR) uptake or Alamar-Blue assay, is concentration- and time-dependent: Upon 24 h treatment of 5637 cells, NR uptake is reduced by 50% with OTA concentrations of ≥0.2 microM, but not with 3 h treatment of the cells. Since cytotoxicity of OTA was not affected by addition of xenobiotic metabolizing enzymes (S-9 mix), it appears to be unrelated to biotransformation of the mycotoxin. Also, addition of S-9 mix did not significantly affect the genotoxicity of OTA as studied by alkaline single cell gel electrophoresis (Comet assay). DNA damage was detectable after 3 h treatment of cells at OTA concentrations between 0.1 and 1 microM, and increased further at higher concentrations. The magnitude of OTA-induced DNA damage did not increase with longer treatment times (18, 24 h), probably due to repair processes in the cells. Repair of OTA-induced lesions is quite efficient in kidney (Arch Toxicol 2002, 75, 734-741) and in porcine bladder cells (Föllmann and Lebrun, 2005, Mycotoxin Research, this volume). Interestingly, the genotoxicity of OTA is modulated by the pH of the culture medium, with higher damage at pH 5 compared to pH 7.5. In line with this, uptake studies with tritiated OTA show a higher cellular accumulation of the mycotoxin at pH 5 than in buffer of pH 7.5. Thus, bladder cells exposed to OTA in slightly acidic urine (which facilitates reabsorption) may be at higher risk.
尽管有充分的证据表明赭曲霉毒素 A(OTA)具有遗传毒性,但 OTA 诱导遗传毒性的机制(直接或间接?)仍不清楚。这就需要进一步描述与 OTA 相关的 DNA 损伤,并研究可能调节细胞内剂量-效应关系的因素。由于膀胱上皮是 OTA 毒性的靶组织,因此研究了其对人膀胱癌细胞(H5637)培养物的影响。OTA 的细胞毒性通过中性红(NR)摄取或 Alamar-Blue 测定来评估,其浓度和时间依赖性:在 5637 细胞 24 小时处理时,OTA 浓度≥0.2μM 时 NR 摄取减少 50%,而 3 小时处理时则不会。由于外源性代谢酶(S-9 混合物)的添加并没有影响 OTA 的细胞毒性,因此它似乎与真菌毒素的生物转化无关。此外,添加 S-9 混合物也没有显著影响碱性单细胞凝胶电泳(彗星试验)研究的 OTA 的遗传毒性。在 0.1 和 1μM 之间的 OTA 浓度下,细胞处理 3 小时后即可检测到 DNA 损伤,并且在更高浓度下进一步增加。OTA 诱导的 DNA 损伤的程度不会随着处理时间的延长而增加(18、24 小时),这可能是由于细胞内的修复过程。OTA 诱导损伤的修复在肾脏(Arch Toxicol 2002, 75, 734-741)和猪膀胱细胞中非常有效(Föllmann 和 Lebrun, 2005, Mycotoxin Research, 本卷)。有趣的是,OTA 的遗传毒性受培养基 pH 值的调节,与 pH7.5 相比,pH5 时的损伤更大。与此一致的是,用氚标记的 OTA 进行的摄取研究表明,在 pH5 的培养基中,真菌毒素的细胞内积累高于 pH7.5 的缓冲液。因此,在略呈酸性的尿液中暴露于 OTA 的膀胱细胞(这有助于重吸收)可能面临更高的风险。