Suppr超能文献

抗原刺激的 CD4 T 细胞的扩增可能受到其与肽-MHC 复合物的短暂结合的限制。

Antigen-stimulated CD4 T cell expansion can be limited by their grazing of peptide-MHC complexes.

机构信息

Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.

出版信息

J Immunol. 2013 Jun 1;190(11):5454-8. doi: 10.4049/jimmunol.1203569. Epub 2013 Apr 19.

Abstract

It was recently shown that the expansion of CD4(+) T cells during a primary immune reaction to a peptide from cytochrome c decreases ~0.5 log for every log increase in the number of cognate precursor cells, and that this remains valid over more than four orders of magnitude (Quiel et al. 2011. Proc. Natl. Acad. Sci. USA. 108: 3312-3317). This observed "power law" was explained by a mechanism where nondividing mature T cells inhibit the proliferation of less-differentiated cells of the same specificity. In this article, we interpret the same data by a mechanism where CD4(+) T cells acquire cognate peptide-MHC (pMHC) complexes from the surface of APCs, thereby increasing the loss rate of pMHC. We show that a mathematical model implementing this "T cell grazing" mechanism, and having a T cell proliferation rate that is determined by the concentration of pMHC, explains the data equally well. As a consequence, the data no longer unequivocally support the previous explanation, and the increased loss of pMHC complexes on APCs at high T cell densities is an equally valid interpretation of this striking data.

摘要

最近的研究表明,在针对细胞色素 c 肽的初次免疫反应中,CD4(+)T 细胞的扩增会随着同源前体细胞数量的每增加一个对数级而减少约 0.5 个对数级,并且这种情况在超过四个数量级的范围内仍然有效(Quiel 等人,2011. Proc. Natl. Acad. Sci. USA. 108: 3312-3317)。这种观察到的“幂律”现象可以用一种机制来解释,即非分裂的成熟 T 细胞抑制同一特异性的分化程度较低的细胞的增殖。在本文中,我们通过一种机制来解释相同的数据,即在这种机制中,CD4(+)T 细胞从 APC 的表面获取同源肽-MHC(pMHC)复合物,从而增加 pMHC 的丢失率。我们表明,一个实施这种“T 细胞放牧”机制的数学模型,并且具有由 pMHC 浓度决定的 T 细胞增殖率,同样可以很好地解释这些数据。因此,这些数据不再明确支持之前的解释,并且在高 T 细胞密度下 APC 上 pMHC 复合物的丢失增加是对这些引人注目的数据的同样有效的解释。

相似文献

1
Antigen-stimulated CD4 T cell expansion can be limited by their grazing of peptide-MHC complexes.
J Immunol. 2013 Jun 1;190(11):5454-8. doi: 10.4049/jimmunol.1203569. Epub 2013 Apr 19.
2
Functional evidence for TCR-intrinsic specificity for MHCII.
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3000-5. doi: 10.1073/pnas.1518499113. Epub 2016 Feb 1.
3
Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition.
PLoS One. 2018 Nov 6;13(11):e0206654. doi: 10.1371/journal.pone.0206654. eCollection 2018.
4
Force-Regulated In Situ TCR-Peptide-Bound MHC Class II Kinetics Determine Functions of CD4+ T Cells.
J Immunol. 2015 Oct 15;195(8):3557-64. doi: 10.4049/jimmunol.1501407. Epub 2015 Sep 2.
5
Stage-dependent reactivity of thymocytes to self-peptide--MHC complexes.
Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5038-43. doi: 10.1073/pnas.0700674104. Epub 2007 Mar 14.
7
T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes.
EMBO J. 2007 Oct 3;26(19):4263-72. doi: 10.1038/sj.emboj.7601842. Epub 2007 Sep 6.
8
Major histocompatibility complex (MHC) class II-peptide complexes arrive at the plasma membrane in cholesterol-rich microclusters.
J Biol Chem. 2013 May 10;288(19):13236-42. doi: 10.1074/jbc.M112.442640. Epub 2013 Mar 26.
9
Understanding the focused CD4 T cell response to antigen and pathogenic organisms.
Immunol Res. 2009 Dec;45(2-3):123-43. doi: 10.1007/s12026-009-8095-8. Epub 2009 Feb 7.
10
Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity.
Nature. 2005 Mar 10;434(7030):238-43. doi: 10.1038/nature03391. Epub 2005 Feb 20.

引用本文的文献

1
Modeling T Cell Fate.
Annu Rev Immunol. 2023 Apr 26;41:513-532. doi: 10.1146/annurev-immunol-101721-040924.
2
Effect of cellular aging on memory T-cell homeostasis.
Front Immunol. 2022 Aug 8;13:947242. doi: 10.3389/fimmu.2022.947242. eCollection 2022.
3
Agent-based computational modeling of glioblastoma predicts that stromal density is central to oncolytic virus efficacy.
iScience. 2022 May 13;25(6):104395. doi: 10.1016/j.isci.2022.104395. eCollection 2022 Jun 17.
4
How a well-adapting immune system remembers.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8815-8823. doi: 10.1073/pnas.1812810116. Epub 2019 Apr 15.
5
Regulation of T cell expansion by antigen presentation dynamics.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5914-5919. doi: 10.1073/pnas.1812800116. Epub 2019 Mar 8.
6
On being the right size: antibody repertoire formation in the mouse and human.
Immunogenetics. 2018 Mar;70(3):143-158. doi: 10.1007/s00251-017-1049-8. Epub 2017 Dec 19.

本文引用的文献

1
Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity.
Eur J Immunol. 2012 Jun;42(6):1405-16. doi: 10.1002/eji.201141774.
2
Feedback regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion on precursor number.
Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3318-23. doi: 10.1073/pnas.1019706108. Epub 2011 Feb 3.
3
Antigen-stimulated CD4 T-cell expansion is inversely and log-linearly related to precursor number.
Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3312-7. doi: 10.1073/pnas.1018525108. Epub 2011 Feb 3.
4
Receptor-mediated T cell absorption of antigen presenting cell-derived molecules.
Front Biosci (Landmark Ed). 2011 Jan 1;16(2):411-21. doi: 10.2741/3695.
5
Complete but curtailed T-cell response to very low-affinity antigen.
Nature. 2009 Mar 12;458(7235):211-4. doi: 10.1038/nature07657. Epub 2009 Jan 28.
6
Antigen-specific T-T interactions regulate CD4 T-cell expansion.
Blood. 2008 Aug 15;112(4):1249-58. doi: 10.1182/blood-2007-09-114389. Epub 2008 Jun 6.
7
Proliferating CD4+ T cells undergo immediate growth arrest upon cessation of TCR signaling in vivo.
J Immunol. 2008 Jan 1;180(1):156-62. doi: 10.4049/jimmunol.180.1.156.
9
CD8 T cell competition for dendritic cells in vivo is an early event in activation.
Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12063-8. doi: 10.1073/pnas.0605130103. Epub 2006 Jul 31.
10
Naive and memory CD4+ T cell survival controlled by clonal abundance.
Science. 2006 Apr 7;312(5770):114-6. doi: 10.1126/science.1124228. Epub 2006 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验