Neural Comput. 2013 Aug;25(8):2038-78. doi: 10.1162/NECO_a_00467. Epub 2013 Apr 22.
Vector symbolic architectures (VSAs) are high-dimensional vector representations of objects (e.g., words, image parts), relations (e.g., sentence structures), and sequences for use with machine learning algorithms. They consist of a vector addition operator for representing a collection of unordered objects, a binding operator for associating groups of objects, and a methodology for encoding complex structures. We first develop constraints that machine learning imposes on VSAs; for example, similar structures must be represented by similar vectors. The constraints suggest that current VSAs should represent phrases ("The smart Brazilian girl") by binding sums of terms, in addition to simply binding the terms directly. We show that matrix multiplication can be used as the binding operator for a VSA, and that matrix elements can be chosen at random. A consequence for living systems is that binding is mathematically possible without the need to specify, in advance, precise neuron-to-neuron connection properties for large numbers of synapses. A VSA that incorporates these ideas, Matrix Binding of Additive Terms (MBAT), is described that satisfies all constraints. With respect to machine learning, for some types of problems appropriate VSA representations permit us to prove learnability rather than relying on simulations. We also propose dividing machine (and neural) learning and representation into three stages, with differing roles for learning in each stage. For neural modeling, we give representational reasons for nervous systems to have many recurrent connections, as well as for the importance of phrases in language processing. Sizing simulations and analyses suggest that VSAs in general, and MBAT in particular, are ready for real-world applications.
向量符号体系(VSAs)是一种用于机器学习算法的对象(如单词、图像部分)、关系(如句子结构)和序列的高维向量表示。它们由一个向量加法运算符组成,用于表示一组无序对象;一个绑定运算符,用于将对象的组相关联;以及一种用于编码复杂结构的方法。我们首先开发了机器学习对 VSAs 施加的约束;例如,相似的结构必须由相似的向量表示。这些约束表明,当前的 VSAs 应该通过绑定项的和来表示短语(例如“聪明的巴西女孩”),而不仅仅是直接绑定项。我们表明,矩阵乘法可以用作 VSA 的绑定运算符,并且矩阵元素可以随机选择。对于生命系统来说,绑定在数学上是可能的,而不需要事先指定大量突触的神经元到神经元的连接属性。我们描述了一种包含这些思想的 VSA,即矩阵加法项的矩阵绑定(MBAT),它满足所有约束。就机器学习而言,对于某些类型的问题,适当的 VSA 表示允许我们证明可学习性,而不是依赖于模拟。我们还提出将机器(和神经)学习和表示分为三个阶段,每个阶段的学习都有不同的作用。对于神经建模,我们给出了神经系统具有许多递归连接的表示性原因,以及在语言处理中短语的重要性。尺寸模拟和分析表明,VSAs 通常,特别是 MBAT,已经为实际应用做好了准备。