Suppr超能文献

作为新兴硬件计算框架的向量符号架构

Vector Symbolic Architectures as a Computing Framework for Emerging Hardware.

作者信息

Kleyko Denis, Davies Mike, Frady E Paxon, Kanerva Pentti, Kent Spencer J, Olshausen Bruno A, Osipov Evgeny, Rabaey Jan M, Rachkovskij Dmitri A, Rahimi Abbas, Sommer Friedrich T

机构信息

Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA 94720, USA and also with the Intelligent Systems Lab at Research Institutes of Sweden, 16440 Kista, Sweden.

Neuromorphic Computing Lab, Intel Labs, Santa Clara, CA 95054, USA.

出版信息

Proc IEEE Inst Electr Electron Eng. 2022 Oct;110(10):1538-1571. Epub 2022 Oct 17.

Abstract

This article reviews recent progress in the development of the computing framework (also known as Hyperdimensional Computing). This framework is well suited for implementation in stochastic, emerging hardware and it naturally expresses the types of cognitive operations required for Artificial Intelligence (AI). We demonstrate in this article that the field-like algebraic structure of Vector Symbolic Architectures offers simple but powerful operations on high-dimensional vectors that can support all data structures and manipulations relevant to modern computing. In addition, we illustrate the distinguishing feature of Vector Symbolic Architectures, "computing in superposition," which sets it apart from conventional computing. It also opens the door to efficient solutions to the difficult combinatorial search problems inherent in AI applications. We sketch ways of demonstrating that Vector Symbolic Architectures are computationally universal. We see them acting as a framework for computing with distributed representations that can play a role of an abstraction layer for emerging computing hardware. This article serves as a reference for computer architects by illustrating the philosophy behind Vector Symbolic Architectures, techniques of distributed computing with them, and their relevance to emerging computing hardware, such as neuromorphic computing.

摘要

本文回顾了计算框架(也称为超维计算)发展的最新进展。该框架非常适合在随机的新兴硬件中实现,并且它自然地表达了人工智能(AI)所需的认知操作类型。我们在本文中证明,向量符号架构的类场代数结构为高维向量提供了简单而强大的操作,这些操作可以支持与现代计算相关的所有数据结构和操作。此外,我们阐述了向量符号架构的独特特征——“叠加计算”,这使其有别于传统计算。它还为有效解决AI应用中固有的困难组合搜索问题打开了大门。我们概述了证明向量符号架构具有计算通用性的方法。我们将它们视为一种使用分布式表示进行计算的框架,该框架可以充当新兴计算硬件的抽象层。本文通过阐述向量符号架构背后的理念、使用它们进行分布式计算的技术以及它们与诸如神经形态计算等新兴计算硬件的相关性,为计算机架构师提供参考。

相似文献

2
Symbolic Representation and Learning With Hyperdimensional Computing.基于超维计算的符号表示与学习
Front Robot AI. 2020 Jun 9;7:63. doi: 10.3389/frobt.2020.00063. eCollection 2020.
3
A system hierarchy for brain-inspired computing.脑启发式计算的系统层次结构。
Nature. 2020 Oct;586(7829):378-384. doi: 10.1038/s41586-020-2782-y. Epub 2020 Oct 14.
4
5
Hyperseed: Unsupervised Learning With Vector Symbolic Architectures.超种子:基于向量符号架构的无监督学习。
IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6583-6597. doi: 10.1109/TNNLS.2022.3211274. Epub 2024 May 2.
7
Efficient Hyperdimensional Computing With Spiking Phasors.基于脉冲相位器的高效超维计算
Neural Comput. 2024 Aug 19;36(9):1886-1911. doi: 10.1162/neco_a_01693.
9
An encoding framework for binarized images using hyperdimensional computing.一种使用超维计算的二值化图像编码框架。
Front Big Data. 2024 Jun 14;7:1371518. doi: 10.3389/fdata.2024.1371518. eCollection 2024.

引用本文的文献

3
Principled neuromorphic reservoir computing.有原则的神经形态储层计算
Nat Commun. 2025 Jan 14;16(1):640. doi: 10.1038/s41467-025-55832-y.
8
Hyperdimensional computing with holographic and adaptive encoder.采用全息与自适应编码器的超维计算
Front Artif Intell. 2024 Apr 9;7:1371988. doi: 10.3389/frai.2024.1371988. eCollection 2024.

本文引用的文献

2
Associative memory of structured knowledge.结构化知识的联想记忆。
Sci Rep. 2022 Dec 17;12(1):21808. doi: 10.1038/s41598-022-25708-y.
3
A Highly Energy-Efficient Hyperdimensional Computing Processor for Biosignal Classification.用于生物信号分类的高能效超维度计算处理器。
IEEE Trans Biomed Circuits Syst. 2022 Aug;16(4):524-534. doi: 10.1109/TBCAS.2022.3187944. Epub 2022 Oct 13.
4
Generalized Key-Value Memory to Flexibly Adjust Redundancy in Memory-Augmented Networks.用于灵活调整内存增强网络中冗余的广义键值内存。
IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):10993-10998. doi: 10.1109/TNNLS.2022.3159445. Epub 2023 Nov 30.
5
Cellular Automata Can Reduce Memory Requirements of Collective-State Computing.细胞自动机可降低集体状态计算的内存需求。
IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2701-2713. doi: 10.1109/TNNLS.2021.3119543. Epub 2022 Jun 1.
6
Variable Binding for Sparse Distributed Representations: Theory and Applications.变量绑定的稀疏分布式表示:理论与应用。
IEEE Trans Neural Netw Learn Syst. 2023 May;34(5):2191-2204. doi: 10.1109/TNNLS.2021.3105949. Epub 2023 May 2.
7
Robust high-dimensional memory-augmented neural networks.稳健的高维记忆增强神经网络。
Nat Commun. 2021 Apr 29;12(1):2468. doi: 10.1038/s41467-021-22364-0.
8
Integer Echo State Networks: Efficient Reservoir Computing for Digital Hardware.整数回声状态网络:用于数字硬件的高效储层计算
IEEE Trans Neural Netw Learn Syst. 2022 Apr;33(4):1688-1701. doi: 10.1109/TNNLS.2020.3043309. Epub 2022 Apr 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验