Laurila Marko, Barankov Roman, Jørgensen Mette M, Alkeskjold Thomas T, Broeng Jes, Lægsgaard Jesper, Ramachandran Siddharth
DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
Opt Express. 2013 Apr 22;21(8):9215-29. doi: 10.1364/OE.21.009215.
Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode coupling of higher-order modes. We analyze the modal regimes of the fibers having a mode field diameter of 60 µm by the cross-correlated (C(2)) imaging method in different wavelength ranges and evaluate the sensitivity of the modal content to various input-coupling conditions. As a result, we experimentally identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations.
采用分布式模式滤波设计的光子晶体带隙光纤可提供接近衍射极限的光输出,这是基于光纤的高功率激光器的一项关键特性。通过高阶模的共振模式耦合来调整光纤的微观结构,以在特定波长下实现单模运行。我们采用互相关(C(2))成像方法,在不同波长范围内分析了模场直径为60 µm的光纤的模态区域,并评估了模态内容对各种输入耦合条件的敏感性。结果,我们通过实验确定了高阶芯模与包层带之间的共振耦合区域。我们展示了一种无源光纤设计,即使对于严重失准的输入耦合配置,单模导光区域内的高阶模态内容也能被抑制至少20 dB。