Suppr超能文献

牙科材料对牙科 MRI 的影响。

Influence of dental materials on dental MRI.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.

出版信息

Dentomaxillofac Radiol. 2013;42(6):20120271. doi: 10.1259/dmfr.20120271. Epub 2013 Apr 22.

Abstract

OBJECTIVES

To investigate the potential influence of standard dental materials on dental MRI (dMRI) by estimating the magnetic susceptibility with the help of the MRI-based geometric distortion method and to classify the materials from the standpoint of dMRI.

METHODS

A series of standard dental materials was studied on a 1.5 T MRI system using spin echo and gradient echo pulse sequences and their magnetic susceptibility was estimated using the geometric method. Measurements on samples of dental materials were supported by in vivo examples obtained in dedicated dMRI procedures.

RESULTS

The tested materials showed a range of distortion degrees. The following materials were classified as fully compatible materials that can be present even in the tooth of interest: the resin-based sealer AH Plus(®) (Dentsply, Maillefer, Germany), glass ionomer cement, gutta-percha, zirconium dioxide and composites from one of the tested manufacturers. Interestingly, composites provided by the other manufacturer caused relatively strong distortions and were therefore classified as compatible I, along with amalgam, gold alloy, gold-ceramic crowns, titanium alloy and NiTi orthodontic wires. Materials, the magnetic susceptibility of which differed from that of water by more than 200 ppm, were classified as non-compatible materials that should not be present in the patient's mouth for any dMRI applications. They included stainless steel orthodontic appliances and CoCr.

CONCLUSIONS

A classification of the materials that complies with the standard grouping of materials according to their magnetic susceptibility was proposed and adopted for the purposes of dMRI. The proposed classification can serve as a guideline in future dMRI research.

摘要

目的

通过使用基于 MRI 的几何变形方法估计磁性,研究标准牙科材料对牙科磁共振成像(dMRI)的潜在影响,并从 dMRI 的角度对材料进行分类。

方法

在 1.5T MRI 系统上使用自旋回波和梯度回波脉冲序列研究一系列标准牙科材料,并使用几何方法估计其磁化率。对牙科材料样本的测量得到了专门的 dMRI 程序中获得的体内实例的支持。

结果

测试的材料显示出一定程度的变形。以下材料被归类为完全兼容的材料,即使在感兴趣的牙齿中也可以存在:基于树脂的密封剂 AH Plus(®)(Dentsply,Maillefer,德国)、玻璃离子水门汀、牙胶、氧化锆和来自一个测试制造商的复合材料。有趣的是,另一个制造商提供的复合材料引起了相对较强的变形,因此被归类为兼容 I,与汞合金、金合金、金瓷冠、钛合金和 NiTi 正畸丝一起。磁性与水相差超过 200ppm 的材料被归类为非兼容材料,任何 dMRI 应用都不应存在于患者口腔中。它们包括不锈钢正畸器具和 CoCr。

结论

提出了一种与根据其磁化率对材料进行标准分组相符的材料分类,并将其用于 dMRI 目的。所提出的分类可以作为未来 dMRI 研究的指南。

相似文献

1
Influence of dental materials on dental MRI.
Dentomaxillofac Radiol. 2013;42(6):20120271. doi: 10.1259/dmfr.20120271. Epub 2013 Apr 22.
4
Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts.
Dent Mater. 2008 Jun;24(6):715-23. doi: 10.1016/j.dental.2007.07.002. Epub 2007 Sep 19.
5
The effects of post-core and crown material and luting agents on stress distribution in tooth restorations.
J Prosthet Dent. 2014 Aug;112(2):211-9. doi: 10.1016/j.prosdent.2013.10.024. Epub 2014 Feb 21.
6
Effects of post core materials on stress distribution in the restoration of mandibular second premolars: a finite element analysis.
J Prosthet Dent. 2014 Sep;112(3):547-54. doi: 10.1016/j.prosdent.2013.12.006. Epub 2014 Mar 11.
7
Artifacts in magnetic resonance imaging and computed tomography caused by dental materials.
PLoS One. 2012;7(2):e31766. doi: 10.1371/journal.pone.0031766. Epub 2012 Feb 22.
8
Effect of aging on coronal microleakage in access cavities through metal ceramic crowns restored with resin composites.
J Prosthodont. 2010 Jul;19(5):347-56. doi: 10.1111/j.1532-849X.2010.00593.x. Epub 2010 Apr 23.
10
Static frictional force and surface roughness of various bracket and wire combinations.
Am J Orthod Dentofacial Orthop. 2011 Jan;139(1):74-9. doi: 10.1016/j.ajodo.2009.02.031.

引用本文的文献

1
Impact of Intra-Oral Dental Materials on Magnetic Resonance Imaging: A Perspective Survey from Dental Professionals.
J Pharm Bioallied Sci. 2025 May;17(Suppl 1):S551-S554. doi: 10.4103/jpbs.jpbs_9_25. Epub 2025 Apr 25.
2
Systematic evaluation of adhesives for implant fixation in multimodal functional brain MRI.
MAGMA. 2025 Apr;38(2):191-205. doi: 10.1007/s10334-024-01220-4. Epub 2025 Jan 15.
3
The influence of preformed metal crowns versus zirconia crowns on the diagnostic quality of magnetic resonance images.
Eur Arch Paediatr Dent. 2025 Feb;26(1):109-117. doi: 10.1007/s40368-024-00971-x. Epub 2024 Nov 13.
4
Radiofrequency-Induced Heating of Amalgam Restorations and Dental Implants during 1.5T Magnetic Resonance Imaging.
Front Dent. 2024 Apr 27;21:15. doi: 10.18502/fid.v21i15.15393. eCollection 2024.
6
Novel Magnetic Composite Materials for Dental Structure Restoration Application.
Nanomaterials (Basel). 2023 Mar 29;13(7):1215. doi: 10.3390/nano13071215.
7
In vivo assessment of artefacts in MRI images caused by conventional twistflex and various fixed orthodontic CAD/CAM retainers.
J Orofac Orthop. 2024 Jul;85(4):279-288. doi: 10.1007/s00056-022-00445-z. Epub 2023 Jan 26.
8
Diagnostic compatibility of various fixed orthodontic retainers for head/neck MRI and dental MRI.
Clin Oral Investig. 2023 May;27(5):2375-2384. doi: 10.1007/s00784-023-04861-2. Epub 2023 Jan 14.
9
Magnetic resonance imaging artefacts caused by orthodontic appliances and/or implant-supported prosthesis: a systematic review.
Oral Radiol. 2023 Apr;39(2):394-407. doi: 10.1007/s11282-022-00652-9. Epub 2022 Sep 30.

本文引用的文献

1
Dental magnetic resonance imaging: making the invisible visible.
J Endod. 2011 Jun;37(6):745-52. doi: 10.1016/j.joen.2011.02.022. Epub 2011 Apr 6.
2
Feasibility of ultra-short echo time (UTE) magnetic resonance imaging for identification of carious lesions.
Magn Reson Med. 2011 Aug;66(2):538-45. doi: 10.1002/mrm.22828. Epub 2011 Feb 28.
3
On precise localization of boundaries between extended uniform objects in MRI: tooth imaging as an example.
MAGMA. 2011 Feb;24(1):19-28. doi: 10.1007/s10334-010-0229-4. Epub 2010 Sep 29.
4
High-resolution 3D magnetic resonance imaging and quantification of carious lesions and dental pulp in vivo.
MAGMA. 2009 Dec;22(6):365-74. doi: 10.1007/s10334-009-0188-9. Epub 2009 Nov 19.
5
Three-dimensional localization of impacted teeth using magnetic resonance imaging.
Clin Oral Investig. 2010 Apr;14(2):169-76. doi: 10.1007/s00784-009-0277-1. Epub 2009 Apr 28.
6
Artifacts in brain magnetic resonance imaging due to metallic dental objects.
Med Oral Patol Oral Cir Bucal. 2009 Jun 1;14(6):E278-82.
7
SEMAC: Slice Encoding for Metal Artifact Correction in MRI.
Magn Reson Med. 2009 Jul;62(1):66-76. doi: 10.1002/mrm.21967.
8
A multispectral three-dimensional acquisition technique for imaging near metal implants.
Magn Reson Med. 2009 Feb;61(2):381-90. doi: 10.1002/mrm.21856.
9
Metallic artifacts in MRI caused by dental alloys and magnetic keeper.
Nihon Hotetsu Shika Gakkai Zasshi. 2008 Apr;52(2):205-10. doi: 10.2186/jjps.52.205.
10
Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts.
Dent Mater. 2008 Jun;24(6):715-23. doi: 10.1016/j.dental.2007.07.002. Epub 2007 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验