Mazzei Maria Antonietta, Squitieri Nevada Cioffi, Sani Eleonora, Guerrini Susanna, Imbriaco Giusi, Di Lucia Duccio, Guasti Andrea, Mazzei Francesco Giuseppe, Volterrani Luca
Department of Human Pathology and Oncology, Section of Radiological Sciences, University of Siena, Siena.
Acta Radiol. 2013 Sep;54(7):805-11. doi: 10.1177/0284185113484643. Epub 2013 Apr 30.
Computed tomographic perfusion (CTp) imaging is a promising technique that allows functional imaging, as an adjunct to a morphologic CT examination, that can be used as an aid to carefully evaluate the response to therapy in oncologic patients. Considering this statement, it could be desirable that the measurements obtained with the CT perfusion software, and their upgrades, are consistent and reproducible.
To determine how commercial software upgrades impact on algorithm consistency and stability among the three version upgrades of the same platform in a preliminary study.
Blood volume (BV), blood flow (BF), mean transit time (MTT), and permeability surface area product (PS) were calculated with repeated measurements (n = 1119) while truncating the time density curve at different time values in six CT perfusion studies using CT perfusion software version 4D (CT Perfusion 4D), then repeated with the previous version (CT Perfusion 3.0 and CT Perfusion 4.0), using a fixed ROI both for arterial input and target lesion. The software upgrades were compared in pairs by applying a Kolmogorov-Smirnov test to all the parameters measured. Stability and reliability of the three versions were verified through the variation of the truncated parameters.
The three software versions provided different parent distributions for approximately 80% of the 72 parameters measured. A complete agreement was found only for one patient in version 3.0 vs. 4.0 and 3.0 vs. 4D. Perfusion 4.0 vs. 4D: a complete agreement was found only in two cases. Parameters obtained with Perfusion 4D always showed the lowest standard deviation in all temporal intervals and also for all individual parameters.
The three versions of the same platform tested yield different perfusion measurements. Thus, our preliminary results show that Perfusion 4D version uses a stable deconvolution algorithm to provide more reliable measurements.
计算机断层扫描灌注(CTp)成像作为一种很有前景的技术,能够实现功能成像,作为形态学CT检查的辅助手段,可用于帮助仔细评估肿瘤患者的治疗反应。鉴于此,期望CT灌注软件所获得的测量结果及其升级版本具有一致性和可重复性。
在一项初步研究中确定商业软件升级如何影响同一平台的三个版本升级之间的算法一致性和稳定性。
在六项CT灌注研究中,使用CT灌注软件版本4D(CT Perfusion 4D),通过重复测量(n = 1119)计算血容量(BV)、血流量(BF)、平均通过时间(MTT)和通透表面积乘积(PS),同时在不同时间值截断时间密度曲线,然后使用动脉输入和靶病变的固定感兴趣区(ROI),用前一版本(CT Perfusion 3.0和CT Perfusion 4.0)重复操作。通过对所有测量参数应用柯尔莫哥洛夫-斯米尔诺夫检验对软件升级进行成对比较。通过截断参数的变化验证三个版本的稳定性和可靠性。
对于所测量的72个参数中的约80%,这三个软件版本提供了不同的总体分布。在版本3.0与4.0以及3.0与4D之间,仅在一名患者中发现完全一致。灌注4.0与4D:仅在两例中发现完全一致。在所有时间间隔以及所有单个参数方面,使用Perfusion 4D获得的参数始终显示出最低的标准差。
测试的同一平台的三个版本产生不同的灌注测量结果。因此,我们的初步结果表明,Perfusion 4D版本使用稳定的去卷积算法来提供更可靠的测量结果。