Suppr超能文献

QSAR 预测中的不确定性。

Uncertainty in QSAR predictions.

机构信息

Linnaeus University, School of Natural Sciences, Kalmar, Sweden.

出版信息

Altern Lab Anim. 2013 Mar;41(1):111-25. doi: 10.1177/026119291304100111.

Abstract

It is relevant to consider uncertainty in individual predictions when quantitative structure-activity (or property) relationships (QSARs) are used to support decisions of high societal concern. Successful communication of uncertainty in the integration of QSARs in chemical safety assessment under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system can be facilitated by a common understanding of how to define, characterise, assess and evaluate uncertainty in QSAR predictions. A QSAR prediction is, compared to experimental estimates, subject to added uncertainty that comes from the use of a model instead of empirically-based estimates. A framework is provided to aid the distinction between different types of uncertainty in a QSAR prediction: quantitative, i.e. for regressions related to the error in a prediction and characterised by a predictive distribution; and qualitative, by expressing our confidence in the model for predicting a particular compound based on a quantitative measure of predictive reliability. It is possible to assess a quantitative (i.e. probabilistic) predictive distribution, given the supervised learning algorithm, the underlying QSAR data, a probability model for uncertainty and a statistical principle for inference. The integration of QSARs into risk assessment may be facilitated by the inclusion of the assessment of predictive error and predictive reliability into the "unambiguous algorithm", as outlined in the second OECD principle.

摘要

当定量结构-活性(或性质)关系(QSARs)被用于支持具有高度社会关注的决策时,考虑个体预测中的不确定性是相关的。在欧盟注册、评估、授权和限制化学品(REACH)系统下,通过对如何定义、描述、评估和评估 QSAR 预测中的不确定性有共同的理解,可以促进成功地将不确定性纳入化学安全评估中的 QSAR 集成。与实验估计相比,QSAR 预测受到来自使用模型而不是基于经验的估计的附加不确定性的影响。提供了一个框架来帮助区分 QSAR 预测中的不同类型的不确定性:定量的,即与预测误差相关的回归,并由预测分布来描述;定性的,通过基于预测可靠性的定量度量来表达我们对模型预测特定化合物的信心。在给定监督学习算法、基础 QSAR 数据、不确定性概率模型和推理统计原理的情况下,可以评估定量(即概率)预测分布。如 OECD 第二原则所述,将预测误差和预测可靠性的评估纳入“明确算法”,可以促进 QSAR 纳入风险评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验