Department of Molecular and Structural Biochemistry, North Carolina State University , Raleigh, North Carolina 27695, United States.
Biochemistry. 2013 May 21;52(20):3415-27. doi: 10.1021/bi400115n. Epub 2013 May 7.
Caspases execute apoptosis and exist in the cell as inactive zymogens (procaspases) prior to activation. Initiator procaspases are monomers that must dimerize for activation, while effector procaspases, such as procaspase-3, are stable dimers that must be processed for activation. The dimer interface regions of the two subfamilies are different, although the role of the interface in oligomerization is not known. Equilibrium and kinetic folding studies were performed on procaspase-3(C163S,V266H), an interface variant, to determine the importance of the dimer interface in the folding of procaspase-3. Equilibrium folding data at pH 5 and 7 display a hysteresis, indicating a kinetically controlled folding reaction. Refolding kinetic studies reveal a complex burst phase, followed by a series of monomeric intermediates. At longer refolding times, the monomer populates a species that becomes kinetically trapped and slowly aggregates. Unfolding kinetic studies reveal a hyperfluorescent native ensemble that unfolds to form highly structured monomeric intermediates that unfold very slowly. Dimerization is very slow, likely because of the inability to correctly orient the histidine residues in the interface, so the initial encounter complex for dimerization is inefficient. As a consequence, the monomer folds into species that aggregate. Introducing a histidine into the interface of procaspase-3 prevents activation by acting as a negative design element, providing evidence that the interface region is a site of regulation of caspase assembly in general by affecting the rate of dimerization.
半胱天冬酶执行细胞凋亡,并在激活前以无活性酶原(procaspase)的形式存在于细胞中。起始 procaspase 是单体,必须二聚化才能激活,而效应 procaspase,如 procaspase-3,则是稳定的二聚体,必须经过加工才能激活。两个亚家族的二聚体界面区域不同,尽管界面在寡聚化中的作用尚不清楚。对 procaspase-3(C163S,V266H),一种界面变体,进行了平衡和动力学折叠研究,以确定二聚体界面在 procaspase-3 折叠中的重要性。在 pH5 和 7 下的平衡折叠数据显示出滞后,表明折叠反应受到动力学控制。重折叠动力学研究揭示了一个复杂的爆发相,随后是一系列单体中间体。在更长的重折叠时间内,单体填充了一种动力学上被捕获并缓慢聚集的物质。解折叠动力学研究揭示了一个超荧光天然聚集体,它解折叠形成高度结构化的单体中间体,这些中间体的解折叠非常缓慢。二聚化非常缓慢,可能是因为不能正确定位界面中的组氨酸残基,所以二聚化的初始接触复合物效率低下。因此,单体折叠成聚集的物质。在 procaspase-3 的界面中引入组氨酸可以作为负设计元素阻止其激活,这表明界面区域是调节 caspase 组装的一般位点,通过影响二聚化的速度来影响。