Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, 1678 Campus Delivery, Fort Collins, CO 80523, USA.
J Pharmacokinet Pharmacodyn. 2013 Aug;40(4):437-49. doi: 10.1007/s10928-013-9317-1. Epub 2013 Apr 25.
Docetaxel is one of the most widely used anticancer agents. While this taxane has proven to be an effective chemotherapeutic drug, noteworthy challenges exist in relation to docetaxel administration due to the considerable interindividual variability in efficacy and toxicity associated with the use of this compound, largely attributable to differences between individuals in their ability to metabolize and eliminate docetaxel. Regarding the latter, the ATP-binding cassette transporter B1 (ABCB1, PGP, MDR1) is primarily responsible for docetaxel elimination. To further understand the role of ABCB1 in the biodistribution of docetaxel in mice, we utilized physiologically-based pharmacokinetic (PBPK) modeling that included ABCB1-mediated transport in relevant tissues. Transporter function was evaluated by studying docetaxel pharmacokinetics in wild-type FVB and Mdr1a/b constitutive knockout (KO) mice and incorporating this concentration-time data into a PBPK model comprised of eight tissue compartments (plasma, brain, heart, lung, kidney, intestine, liver and slowly perfused tissues) and, in addition to ABCB1-mediated transport, included intravenous drug administration, specific binding to intracellular tubulin, intestinal and hepatic metabolism, glomerular filtration and tubular reabsorption. For all tissues in both the FVB and KO cohorts, the PBPK model simulations closely mirrored the observed data. Furthermore, both models predicted AUC values that were with 15 % of the observed AUC values, indicating that our model-simulated drug exposures accurately reflected the observed tissue exposures. Overall, our PBPK model furthers the understanding of the role of ABCB1 in the biodistribution of docetaxel. Additionally, this exemplary model structure can be applied to investigate the pharmacokinetics of other ABCB1 transporter substrates.
多西他赛是最广泛使用的抗癌药物之一。虽然这种紫杉烷已被证明是一种有效的化疗药物,但由于使用该化合物的疗效和毒性存在相当大的个体间差异,与个体在代谢和消除多西他赛的能力方面存在差异有很大关系,因此在多西他赛给药方面存在显著挑战。在后一种情况下,ATP 结合盒转运蛋白 B1(ABCB1、PGP、MDR1)主要负责多西他赛的消除。为了进一步了解 ABCB1 在小鼠体内多西他赛生物分布中的作用,我们利用包含相关组织中 ABCB1 介导转运的基于生理学的药代动力学(PBPK)建模。通过研究野生型 FVB 和 Mdr1a/b 组成型敲除(KO)小鼠中的多西他赛药代动力学,并将这些浓度-时间数据纳入包含八个组织隔室(血浆、大脑、心脏、肺、肾脏、肠、肝脏和缓慢灌注组织)的 PBPK 模型,评估转运蛋白功能,除了 ABCB1 介导的转运,还包括静脉内药物给药、与细胞内微管的特异性结合、肠内和肝内代谢、肾小球滤过和管状重吸收。对于 FVB 和 KO 两个队列的所有组织,PBPK 模型模拟都非常接近观察到的数据。此外,两种模型都预测 AUC 值在观察到的 AUC 值的 15%以内,表明我们的模型模拟的药物暴露准确反映了观察到的组织暴露。总的来说,我们的 PBPK 模型进一步了解了 ABCB1 在多西他赛生物分布中的作用。此外,这种示范模型结构可用于研究其他 ABCB1 转运蛋白底物的药代动力学。