Suppr超能文献

Insensitivity of maximum expiratory flow to bronchodilation in normal dogs.

作者信息

Eng J, Gomez A, Mink S

机构信息

Section of Respiratory Diseases, University of Manitoba, Winnipeg, Canada.

出版信息

J Appl Physiol (1985). 1990 May;68(5):2006-12. doi: 10.1152/jappl.1990.68.5.2006.

Abstract

We examined the effects of the inhaled parasympatholytic agent atropine and the sympathomimetic agent salbutamol on partitioned frictional pressure (Pfr) losses to the site of flow limitation (choke point, CP) in dogs to see how changes brought about by these agents would affect maximum expiratory flow (Vmax) and response to breathing 80% He-20% O2 (delta Vmax) in terms of wave-speed theory of flow limitation. In open-chest dogs, a Pitot-static tube was advanced down the right lower lobe to locate CP, to determine CP lateral and end-on pressures (PE), and to partition the airway into peripheral (alveoli to sublobar) and central (sublobar to CP) segments. Measurements were obtained at approximately 50% vital capacity. After inhalation, CP locations were unchanged with both bronchodilating agents. After atropine inhalation, Pfr central was decreased by one-half compared with base line. Despite the decrease in Pfr central, however, Vmax failed to increase after atropine because of altered bronchial area pressure (BAP) behavior at the CP site. After salbutamol inhalation, Pfr peripheral was reduced by about one-half compared with base line. However, Vmax failed to increase, because this reduction was too small to significantly increase the CP pressure head (i.e., PE). delta Vmax was also insensitive to these agents. Our results show mechanisms by which small changes in Pfr, as well as the complex interaction of changes in Pfr and BAP, may limit the use of Vmax in detecting bronchodilation at different airway sites.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验