Suppr超能文献

4D 数字减影血管造影:实施与可行性论证。

4D digital subtraction angiography: implementation and demonstration of feasibility.

机构信息

University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.

出版信息

AJNR Am J Neuroradiol. 2013 Oct;34(10):1914-21. doi: 10.3174/ajnr.A3529. Epub 2013 Apr 25.

Abstract

BACKGROUND AND PURPOSE

Conventional 3D-DSA volumes are reconstructed from a series of projections containing temporal information. It was our purpose to develop a technique which would generate fully time-resolved 3D-DSA vascular volumes having better spatial and temporal resolution than that which is available with CT or MR angiography.

MATERIALS AND METHODS

After a single contrast injection, projections from the mask and fill rotation are subtracted to create a series of vascular projections. With the use of these projections, a conventional conebeam CT reconstruction is generated (conventional 3D-DSA). This is used to constrain the reconstruction of individual 3D temporal volumes, which incorporate temporal information from the acquired projections (4D-DSA).

RESULTS

Typically, 30 temporal volumes per second are generated with the use of currently available flat detector systems, a factor of ∼200 increase over that achievable with the use of multiple gantry rotations. Dynamic displays of the reconstructed volumes are viewable from any angle. Good results have been obtained by using both intra-arterial and intravenous injections.

CONCLUSIONS

It is feasible to generate time-resolved 3D-DSA vascular volumes with the use of commercially available flat detector angiographic systems and clinically practical injection protocols. The spatial resolution and signal-to-noise ratio of the time frames are largely determined by that of the conventional 3D-DSA constraining image and not by that of the projections used to generate the 3D reconstruction. The spatial resolution and temporal resolution exceed that of CTA and MRA, and the small vessel contrast is increased relative to that of conventional 2D-DSA due to the use of maximum intensity projections.

摘要

背景与目的

传统的 3D-DSA 容积是由包含时间信息的一系列投影重建而来。我们的目的是开发一种技术,该技术可以生成完全时间分辨的 3D-DSA 血管容积,其空间和时间分辨率均优于 CT 或 MR 血管造影。

材料与方法

在单次造影剂注射后,从掩模和填充旋转中减去投影,以创建一系列血管投影。使用这些投影,生成常规的锥形束 CT 重建(常规 3D-DSA)。这用于约束各个 3D 时间容积的重建,这些容积包含从采集的投影中获取的时间信息(4D-DSA)。

结果

目前可用的平板探测器系统通常每秒可生成 30 个时间容积,这是使用多个龙门旋转时可实现的时间分辨率的约 200 倍。可以从任何角度查看重建容积的动态显示。使用动脉内和静脉内注射均获得了良好的结果。

结论

使用市售的平板探测器血管造影系统和临床实用的注射方案生成时间分辨的 3D-DSA 血管容积是可行的。时间帧的空间分辨率和信噪比主要取决于常规 3D-DSA 约束图像的分辨率,而不是用于生成 3D 重建的投影的分辨率。空间分辨率和时间分辨率均优于 CTA 和 MRA,并且由于使用了最大强度投影,与常规的 2D-DSA 相比,小血管对比度得到了提高。

相似文献

1
4D digital subtraction angiography: implementation and demonstration of feasibility.
AJNR Am J Neuroradiol. 2013 Oct;34(10):1914-21. doi: 10.3174/ajnr.A3529. Epub 2013 Apr 25.
2
4D DSA a new technique for arteriovenous malformation evaluation: a feasibility study.
J Neurointerv Surg. 2016 Mar;8(3):300-4. doi: 10.1136/neurintsurg-2014-011534. Epub 2015 Jan 12.
3
Time-resolved 3D rotational angiography: display of detailed neurovascular anatomy in patients with intracranial vascular malformations.
J Neurointerv Surg. 2017 Sep;9(9):887-894. doi: 10.1136/neurintsurg-2016-012462. Epub 2016 Aug 4.
4
Application of Time-Resolved 3D Digital Subtraction Angiography to Plan Cerebral Arteriovenous Malformation Radiosurgery.
AJNR Am J Neuroradiol. 2017 Apr;38(4):740-746. doi: 10.3174/ajnr.A5074. Epub 2017 Jan 26.
5
Integration of arterial spin labeling into stereotactic radiosurgery planning of cerebral arteriovenous malformations.
J Magn Reson Imaging. 2017 Dec;46(6):1718-1727. doi: 10.1002/jmri.25690. Epub 2017 Mar 10.
6
Virtual 2D angiography from four-dimensional digital subtraction angiography (4D-DSA): A feasibility study.
Interv Neuroradiol. 2021 Apr;27(2):307-313. doi: 10.1177/1591019920961604. Epub 2020 Sep 26.
7
Four-dimensional digital subtraction angiography: implementation and demonstration of feasibility.
World Neurosurg. 2014 Mar-Apr;81(3-4):454-5. doi: 10.1016/j.wneu.2014.01.009. Epub 2014 Jan 20.
10
MO-D-213CD-04: 4D X-Ray DSA and 4D Fluoroscopy.
Med Phys. 2012 Jun;39(6Part21):3869. doi: 10.1118/1.4735797.

引用本文的文献

1
Middle cerebral artery dissection: pathophysiology, diagnosis, and therapeutic options.
Front Neurol. 2025 Aug 1;16:1622630. doi: 10.3389/fneur.2025.1622630. eCollection 2025.
2
Spatiotemporally constrained 3D reconstruction from biplanar digital subtraction angiography.
Int J Comput Assist Radiol Surg. 2025 Aug;20(8):1689-1701. doi: 10.1007/s11548-025-03427-9. Epub 2025 Jun 1.
5
Uterine Arteriovenous Malformation: Diagnostic and Therapeutic Challenges.
Diagnostics (Basel). 2024 May 23;14(11):1084. doi: 10.3390/diagnostics14111084.
9
4D-DSA for Assessment of the Angioarchitecture and Grading of Cranial Dural AVF.
AJNR Am J Neuroradiol. 2023 Nov;44(11):1291-1295. doi: 10.3174/ajnr.A8008. Epub 2023 Oct 12.
10
Spatiotemporal frequency domain analysis for blood velocity measurement during embolization procedures.
Med Phys. 2024 Mar;51(3):1726-1737. doi: 10.1002/mp.16715. Epub 2023 Sep 4.

本文引用的文献

2
Cerebral CT perfusion using an interventional C-arm imaging system: cerebral blood flow measurements.
AJNR Am J Neuroradiol. 2011 Sep;32(8):1525-31. doi: 10.3174/ajnr.A2518. Epub 2011 Jul 14.
4
Parametric color coding of digital subtraction angiography.
AJNR Am J Neuroradiol. 2010 May;31(5):919-24. doi: 10.3174/ajnr.A2020. Epub 2010 Feb 18.
5
Computed tomography dose assessment for a 160 mm wide, 320 detector row, cone beam CT scanner.
Phys Med Biol. 2009 May 21;54(10):3141-59. doi: 10.1088/0031-9155/54/10/012. Epub 2009 May 6.
8
Image intensifier-based computed tomography volume scanner for angiography.
Acad Radiol. 1996 Apr;3(4):344-50. doi: 10.1016/s1076-6332(96)80255-8.
9
Clinical applications of computerized fluoroscopy: the extracranial carotid arteries.
Radiology. 1980 Sep;136(3):781-3. doi: 10.1148/radiology.136.3.7403561.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验