Suppr超能文献

用于功能性脑图像的中心化、旋转和对齐的相关方法。

Correlation methods for the centering, rotation, and alignment of functional brain images.

作者信息

Junck L, Moen J G, Hutchins G D, Brown M B, Kuhl D E

机构信息

Department of Neurology, University of Michigan, Ann Arbor.

出版信息

J Nucl Med. 1990 Jul;31(7):1220-6.

PMID:2362201
Abstract

Simple methods are described using correlation analysis to rotate functional brain images to a standard vertical orientation, identify the antero-posterior centerline, and align multiple images from the same brain level. Image rotation and centering are performed by determining the angle of rotation and centerline coordinate that result in maximal left-right correlation. Testing of this method on sets of multiple images acquired simultaneously through different brain levels suggests that the optimal rotation can be determined within 1 degree and the centerline within 0.3 mm. Spatial alignment of two or more images from the same brain level of a single subject is accomplished by finding the translation and rotation that yield the highest correlation between the images. Testing of the alignment method on sets of simultaneously acquired images at multiple brain levels suggests that the optimal translation can be determined within 0.45-0.69 mm and the optimal rotation within 0.8 degrees. These methods are completely objective and can easily be automated.

摘要

本文描述了一些简单的方法,这些方法利用相关性分析将功能性脑图像旋转至标准垂直方向、识别前后中心线,并对齐来自同一脑水平的多个图像。图像旋转和居中是通过确定能产生最大左右相关性的旋转角度和中心线坐标来实现的。在通过不同脑水平同时采集的多组图像上对该方法进行测试表明,最佳旋转角度可在1度内确定,中心线可在0.3毫米内确定。通过找到能使同一受试者同一脑水平的两个或多个图像之间产生最高相关性的平移和旋转,来完成这些图像的空间对齐。在多个脑水平同时采集的图像组上对对齐方法进行测试表明,最佳平移可在0.45 - 0.69毫米内确定,最佳旋转可在0.8度内确定。这些方法完全客观,并且很容易实现自动化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验