School of Electrical Engineering and Computer Science, Kyungpook National University, 1370 Sankyuk-Dong, Puk-Gu, Taegu 702-701, Republic of Korea.
Neural Netw. 2013 Oct;46:9-22. doi: 10.1016/j.neunet.2013.04.002. Epub 2013 Apr 8.
Humans can efficiently perceive arbitrary visual objects based on an incremental learning mechanism with selective attention. This paper proposes a new task specific top-down attention model to locate a target object based on its form and color representation along with a bottom-up saliency based on relativity of primitive visual features and some memory modules. In the proposed model top-down bias signals corresponding to the target form and color features are generated, which draw the preferential attention to the desired object by the proposed selective attention model in concomitance with the bottom-up saliency process. The object form and color representation and memory modules have an incremental learning mechanism together with a proper object feature representation scheme. The proposed model includes a Growing Fuzzy Topology Adaptive Resonance Theory (GFTART) network which plays two important roles in object color and form biased attention; one is to incrementally learn and memorize color and form features of various objects, and the other is to generate a top-down bias signal to localize a target object by focusing on the candidate local areas. Moreover, the GFTART network can be utilized for knowledge inference which enables the perception of new unknown objects on the basis of the object form and color features stored in the memory during training. Experimental results show that the proposed model is successful in focusing on the specified target objects, in addition to the incremental representation and memorization of various objects in natural scenes. In addition, the proposed model properly infers new unknown objects based on the form and color features of previously trained objects.
人类可以通过选择性注意的增量学习机制有效地感知任意视觉对象。本文提出了一种新的特定于任务的自上而下的注意模型,该模型基于形式和颜色表示以及基于原始视觉特征和一些记忆模块的相关性的自下而上的显着性来定位目标对象。在所提出的模型中,生成与目标形式和颜色特征相对应的自上而下的偏差信号,通过所提出的选择性注意模型与自下而上的显着性过程一起,将优先注意引向所需的对象。对象的形式和颜色表示以及记忆模块具有增量学习机制以及适当的对象特征表示方案。所提出的模型包括一个增长模糊拓扑自适应共振理论 (GFTART) 网络,该网络在对象颜色和形式有偏注意中起着两个重要作用;一个是增量学习和记忆各种对象的颜色和形式特征,另一个是通过关注候选局部区域生成自上而下的偏差信号来定位目标对象。此外,GFTART 网络可用于知识推理,从而能够根据训练期间存储在记忆中的对象形式和颜色特征感知新的未知对象。实验结果表明,所提出的模型成功地聚焦于指定的目标对象,同时还可以对自然场景中的各种对象进行增量表示和记忆。此外,所提出的模型可以根据先前训练的对象的形式和颜色特征适当地推断新的未知对象。