Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia.
Nanoscale. 2013 Jun 7;5(11):4910-6. doi: 10.1039/c3nr00690e. Epub 2013 Apr 26.
A novel nanocomposite architecture of a Fe2O3-SnO2-C anode, based on clusters of Fe2O3 and SnO2 nanoparticles dispersed along the conductive chains of Super P Li™ carbon black (Timcal Ltd.), is presented as a breathable structure in this paper for lithium-ion batteries. The synthesis of the nanocomposite is achieved by combining a molten salt precipitation process and a ball milling method for the first time. The crystalline structure, morphology, and electrochemical characterization of the synthesised product are investigated systematically. Electrochemical results demonstrate that the reversible capacity of the composite anode is 1110 mA h g(-1) at a current rate of 158 mA g(-1) with only 31% of initial irreversible capacity in the first cycle. A high reversible capacity of 502 mA h g(-1) (higher than the theoretical capacity of graphite, ~372 mA h g(-1)) can be obtained at a high current rate of 3950 mA g(-1). The electrochemical performance is compared favourably with those of Fe2O3-SnO2 and Fe2O3-SnO2-C composite anodes for lithium-ion batteries reported in the literature. This work reports a promising method for the design and preparation of nanocomposite electrodes for lithium-ion batteries.
本文提出了一种基于 Fe2O3 和 SnO2 纳米颗粒簇分散在 Super P Li™ 碳黑(Timcal Ltd.)导电链上的新型 Fe2O3-SnO2-C 纳米复合结构,作为锂离子电池的透气结构。该纳米复合材料的合成采用熔融盐沉淀法和球磨法相结合的方法首次实现。系统研究了合成产物的晶体结构、形貌和电化学特性。电化学结果表明,该复合阳极在 158 mA g(-1) 的电流速率下具有 1110 mA h g(-1) 的可逆容量,在第一个循环中仅具有 31%的初始不可逆容量。在 3950 mA g(-1) 的高电流速率下,可获得 502 mA h g(-1) 的高可逆容量(高于石墨的理论容量,约 372 mA h g(-1))。与文献中报道的锂离子电池用 Fe2O3-SnO2 和 Fe2O3-SnO2-C 复合阳极的电化学性能相比,该性能表现出优异的性能。这项工作报道了一种设计和制备锂离子电池纳米复合电极的有前途的方法。