Suppr超能文献

火龙果状Sn@C纳米复合材料作为锂离子电池的高倍率长寿命负极

Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries.

作者信息

Zhang Ning, Zhao Qing, Han Xiaopeng, Yang Jingang, Chen Jun

机构信息

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China.

出版信息

Nanoscale. 2014 Mar 7;6(5):2827-32. doi: 10.1039/c3nr05523j. Epub 2014 Jan 27.

Abstract

In this article, we report on the preparation of the pitaya-like Sn@C nanocomposite with an aerosol spray pyrolysis and its application as a high-rate and long-life anode material for lithium-ion batteries. The structure and morphology analysis of the as-prepared Sn@C nanocomposite shows that Sn nanoparticles with a size of about 8 nm are homogeneously dispersed in the spherical carbon matrix (denoted as Sn8@C). The Sn8@C nanocomposite exhibits an initial discharge capacity of 1007.1 mA h g(-1) and maintains a reversible capacity of 910 mA h g(-1) after 180 cycles at 200 mA g(-1) (0.305 C). A capacity of 410 mA h g(-1) was obtained after 1000 cycles at 4000 mA g(-1) (6.1 C). Furthermore, the Sn8@C nanocomposite displays a charge-discharge capacity of 205.3 mA h g(-1) at 16 000 mA g(-1) (24.4 C). This high-rate performance is owing to the fact that the ultrasmall tin nanoparticles can effectively alleviate the absolute stress/strain during the lithiation/delithiation process and that the uniformly embedded nanoparticles in the stable carbon framework can accommodate the large volume change with a buffering effect to prevent Sn nanoparticles from aggregating.

摘要

在本文中,我们报道了采用气溶胶喷雾热解法制备火龙果状Sn@C纳米复合材料及其作为锂离子电池高倍率长寿命负极材料的应用。所制备的Sn@C纳米复合材料的结构和形貌分析表明,尺寸约为8 nm的Sn纳米颗粒均匀分散在球形碳基体中(记为Sn8@C)。Sn8@C纳米复合材料的首次放电容量为1007.1 mA h g(-1),在200 mA g(-1)(0.305 C)下循环180次后保持910 mA h g(-1)的可逆容量。在4000 mA g(-1)(6.1 C)下循环1000次后,容量为410 mA h g(-1)。此外,Sn8@C纳米复合材料在16000 mA g(-1)(24.4 C)下的充放电容量为205.3 mA h g(-1)。这种高倍率性能归因于超小的锡纳米颗粒能够有效缓解锂化/脱锂过程中的绝对应力/应变,以及稳定碳骨架中均匀嵌入的纳米颗粒能够适应大体积变化并具有缓冲作用以防止Sn纳米颗粒聚集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验