Bowman Gregory R, Ensign Daniel L, Pande Vijay S
Biophysics Program, Stanford University, Stanford, CA 94305.
J Chem Theory Comput. 2010;6(3):787-94. doi: 10.1021/ct900620b.
Computer simulations can complement experiments by providing insight into molecular kinetics with atomic resolution. Unfortunately, even the most powerful supercomputers can only simulate small systems for short timescales, leaving modeling of most biologically relevant systems and timescales intractable. In this work, however, we show that molecular simulations driven by adaptive sampling of networks called Markov State Models (MSMs) can yield tremendous time and resource savings, allowing previously intractable calculations to be performed on a routine basis on existing hardware. We also introduce a distance metric (based on the relative entropy) for comparing MSMs. We primarily employ this metric to judge the convergence of various sampling schemes but it could also be employed to assess the effects of perturbations to a system (e.g. determining how changing the temperature or making a mutation changes a system's dynamics).
计算机模拟可以通过提供原子分辨率下的分子动力学洞察来补充实验。不幸的是,即使是最强大的超级计算机也只能在短时间尺度上模拟小系统,使得大多数与生物学相关的系统和时间尺度的建模难以处理。然而,在这项工作中,我们表明由称为马尔可夫状态模型(MSMs)的网络自适应采样驱动的分子模拟可以节省大量时间和资源,使以前难以处理的计算能够在现有硬件上常规进行。我们还引入了一种用于比较MSMs的距离度量(基于相对熵)。我们主要使用这个度量来判断各种采样方案的收敛性,但它也可以用于评估对系统的扰动影响(例如确定改变温度或进行突变如何改变系统的动力学)。