Suppr超能文献

构建多分辨率马尔可夫状态模型(MSMs)以阐明RNA发夹折叠机制。

Constructing multi-resolution Markov State Models (MSMs) to elucidate RNA hairpin folding mechanisms.

作者信息

Huang Xuhui, Yao Yuan, Bowman Gregory R, Sun Jian, Guibas Leonidas J, Carlsson Gunnar, Pande Vijay S

机构信息

Department of Chemistry, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, China.

出版信息

Pac Symp Biocomput. 2010:228-39. doi: 10.1142/9789814295291_0025.

Abstract

Simulating biologically relevant timescales at atomic resolution is a challenging task since typical atomistic simulations are at least two orders of magnitude shorter. Markov State Models (MSMs) provide one means of overcoming this gap without sacrificing atomic resolution by extracting long time dynamics from short simulations. MSMs coarse grain space by dividing conformational space into long-lived, or metastable, states. This is equivalent to coarse graining time by integrating out fast motions within metastable states. By varying the degree of coarse graining one can vary the resolution of an MSM; therefore, MSMs are inherently multi-resolution. Here we introduce a new algorithm Super-level-set Hierarchical Clustering (SHC), to our knowledge, the first algorithm focused on constructing MSMs at multiple resolutions. The key insight of this algorithm is to generate a set of super levels covering different density regions of phase space, then cluster each super level separately, and finally recombine this information into a single MSM. SHC is able to produce MSMs at different resolutions using different super density level sets. To demonstrate the power of this algorithm we apply it to a small RNA hairpin, generating MSMs at four different resolutions. We validate these MSMs by showing that they are able to reproduce the original simulation data. Furthermore, long time folding dynamics are extracted from these models. The results show that there are no metastable on-pathway intermediate states. Instead, the folded state serves as a hub directly connected to multiple unfolded/misfolded states which are separated from each other by large free energy barriers.

摘要

在原子分辨率下模拟生物学相关的时间尺度是一项具有挑战性的任务,因为典型的原子模拟至少要短两个数量级。马尔可夫状态模型(MSM)提供了一种克服这一差距的方法,它通过从短模拟中提取长时间动态,而不牺牲原子分辨率。MSM通过将构象空间划分为长寿命或亚稳态来对空间进行粗粒化。这相当于通过对亚稳态内的快速运动进行积分来对时间进行粗粒化。通过改变粗粒化程度,可以改变MSM的分辨率;因此,MSM本质上是多分辨率的。在此,我们引入了一种新算法——超水平集层次聚类(SHC),据我们所知,这是第一种专注于构建多分辨率MSM的算法。该算法的关键见解是生成一组覆盖相空间不同密度区域的超水平,然后分别对每个超水平进行聚类,最后将这些信息重新组合成一个单一的MSM。SHC能够使用不同的超密度水平集生成不同分辨率的MSM。为了证明该算法的强大功能,我们将其应用于一个小RNA发夹,生成了四种不同分辨率的MSM。我们通过证明这些MSM能够重现原始模拟数据来验证它们。此外,从这些模型中提取了长时间的折叠动力学。结果表明,不存在亚稳态的折叠中间态。相反,折叠态充当了一个枢纽,直接连接到多个未折叠/错误折叠态,这些态之间由大的自由能垒分隔开。

相似文献

6
Information Bottleneck Approach for Markov Model Construction.信息瓶颈方法在马尔可夫模型构建中的应用。
J Chem Theory Comput. 2024 Jun 25;20(12):5352-5367. doi: 10.1021/acs.jctc.4c00449. Epub 2024 Jun 10.

引用本文的文献

2
Information Bottleneck Approach for Markov Model Construction.信息瓶颈方法在马尔可夫模型构建中的应用。
J Chem Theory Comput. 2024 Jun 25;20(12):5352-5367. doi: 10.1021/acs.jctc.4c00449. Epub 2024 Jun 10.
3
An encompassed representation of timescale hierarchies in first-order reaction network.一级反应网络中时间尺度层次结构的综合表示。
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2317781121. doi: 10.1073/pnas.2317781121. Epub 2024 May 17.
5
9
Deciphering the Allosteric Process of the Aureochrome 1a LOV Domain.解析 Aureochrome 1a LOV 结构域的别构过程。
J Phys Chem B. 2020 Oct 15;124(41):8960-8972. doi: 10.1021/acs.jpcb.0c05842. Epub 2020 Oct 1.

本文引用的文献

1
Rapid equilibrium sampling initiated from nonequilibrium data.从非平衡数据开始的快速平衡采样。
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19765-9. doi: 10.1073/pnas.0909088106. Epub 2009 Sep 29.
7
Structural insight into RNA hairpin folding intermediates.对RNA发夹折叠中间体的结构洞察。
J Am Chem Soc. 2008 Jul 30;130(30):9676-8. doi: 10.1021/ja8032857. Epub 2008 Jul 1.
8
Translation at the single-molecule level.单分子水平的翻译。
Annu Rev Biochem. 2008;77:177-203. doi: 10.1146/annurev.biochem.77.070606.101431.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验