Australian School of Advanced Medicine, Level 1, 2 Technology Drive, Macquarie University, Sydney, NSW, Australia.
Eur J Neurosci. 2013 Jul;38(2):2260-70. doi: 10.1111/ejn.12230. Epub 2013 Apr 29.
The cAMP-protein kinase A (PKA) pathway plays a critical role in regulating neuronal activity. Yet, how PKA signalling shapes the population activity of neurons that regulate respiratory rhythm and motor patterns in vivo is poorly defined. We determined the respiratory effects of focally inhibiting endogenous PKA activity in defined classes of respiratory neurons in the ventrolateral medulla and spinal cord by microinjection of the membrane-permeable PKA inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS) in urethane-anaesthetized adult Sprague Dawley rats. Phrenic nerve activity, end-tidal CO2 and arterial pressure were recorded. Rp-cAMPS in the preBötzinger complex (preBötC) caused powerful, dose-dependent depression of phrenic burst amplitude and inspiratory period. Rp-cAMPS powerfully depressed burst amplitude in the phrenic premotor nucleus, but had no effect at the phrenic motor nucleus, suggesting a lack of persistent PKA activity here. Surprisingly, inhibition of PKA activity in the preBötC increased phrenic burst frequency, whereas in the Bötzinger complex phrenic frequency decreased. Pretreating the preBötC with strychnine, but not bicuculline, blocked the Rp-cAMPS-evoked increase in frequency, but not the depression of phrenic burst amplitude. We conclude that endogenous PKA activity in excitatory inspiratory preBötzinger neurons and phrenic premotor neurons, but not motor neurons, regulates network inspiratory drive currents that underpin the intensity of phrenic nerve discharge. We show that inhibition of PKA activity reduces tonic glycinergic transmission that normally restrains the frequency of rhythmic respiratory activity. Finally, we suggest that the maintenance of the respiratory rhythm in vivo is not dependent on endogenous cAMP-PKA signalling.
cAMP 蛋白激酶 A(PKA)通路在调节神经元活动中起着关键作用。然而,PKA 信号如何塑造调节呼吸节律和运动模式的神经元的群体活动,在体内还没有得到很好的定义。我们通过在成年 Sprague Dawley 大鼠的乌来烷麻醉下,在腹外侧延髓和脊髓中用膜透性 PKA 抑制剂 Rp-腺苷 3',5'-环单磷酸硫代酯(Rp-cAMPS)对特定类别的呼吸神经元进行局部抑制,来确定 PKA 活性对呼吸的影响。记录膈神经活动、呼气末二氧化碳和动脉压。Rp-cAMPS 在 PreBötzinger 复合体(preBötC)中引起强大的、剂量依赖性的膈神经爆发幅度和吸气期的抑制。Rp-cAMPS 强烈抑制膈神经运动核中的爆发幅度,但对膈神经运动核没有影响,这表明此处缺乏持续的 PKA 活性。令人惊讶的是,PreBötC 中的 PKA 活性抑制增加了膈神经爆发频率,而在 Bötzinger 复合体中,膈神经频率下降。用士的宁预处理 PreBötC,但不用 Bicuculline 阻断,可阻断 Rp-cAMPS 诱发的频率增加,但不能阻断膈神经爆发幅度的抑制。我们得出结论,兴奋性吸气性 PreBötzinger 神经元和膈神经运动前神经元中的内源性 PKA 活性,但不是运动神经元中的 PKA 活性,调节网络吸气驱动电流,支撑膈神经放电的强度。我们发现抑制 PKA 活性会降低正常抑制节律性呼吸活动频率的紧张性甘氨酸能传递。最后,我们认为体内呼吸节律的维持不依赖于内源性 cAMP-PKA 信号。