Wan Salim Wan W Amani, Zeitchek Michael A, Hermann Andrew C, Ricco Antonio J, Tan Ming, Selch Florian, Fleming Erich, Bebout Brad M, Bader Mamoun M, Ul Haque Aeraj, Porterfield D Marshall
Department of Agricultural and Biological Engineering, Birck-Bindley Physiological Sensing Facility, Purdue University.
J Vis Exp. 2013 Apr 18(74):50020. doi: 10.3791/50020.
Lab-on-a-chip (LOC) applications in environmental, biomedical, agricultural, biological, and spaceflight research require an ion-selective electrode (ISE) that can withstand prolonged storage in complex biological media (1-4). An all-solid-state ion-selective-electrode (ASSISE) is especially attractive for the aforementioned applications. The electrode should have the following favorable characteristics: easy construction, low maintenance, and (potential for) miniaturization, allowing for batch processing. A microfabricated ASSISE intended for quantifying H(+), Ca(2+), and CO3(2-) ions was constructed. It consists of a noble-metal electrode layer (i.e. Pt), a transduction layer, and an ion-selective membrane (ISM) layer. The transduction layer functions to transduce the concentration-dependent chemical potential of the ion-selective membrane into a measurable electrical signal. The lifetime of an ASSISE is found to depend on maintaining the potential at the conductive layer/membrane interface (5-7). To extend the ASSISE working lifetime and thereby maintain stable potentials at the interfacial layers, we utilized the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) (PEDOT) (7-9) in place of silver/silver chloride (Ag/AgCl) as the transducer layer. We constructed the ASSISE in a lab-on-a-chip format, which we called the multi-analyte biochip (MAB) (Figure 1). Calibrations in test solutions demonstrated that the MAB can monitor pH (operational range pH 4-9), CO3(2-) (measured range 0.01 mM - 1 mM), and Ca(2+) (log-linear range 0.01 mM to 1 mM). The MAB for pH provides a near-Nernstian slope response after almost one month storage in algal medium. The carbonate biochips show a potentiometric profile similar to that of a conventional ion-selective electrode. Physiological measurements were employed to monitor biological activity of the model system, the microalga Chlorella vulgaris. The MAB conveys an advantage in size, versatility, and multiplexed analyte sensing capability, making it applicable to many confined monitoring situations, on Earth or in space. Biochip Design and Experimental Methods The biochip is 10 x 11 mm in dimension and has 9 ASSISEs designated as working electrodes (WEs) and 5 Ag/AgCl reference electrodes (REs). Each working electrode (WE) is 240 μm in diameter and is equally spaced at 1.4 mm from the REs, which are 480 μm in diameter. These electrodes are connected to electrical contact pads with a dimension of 0.5 mm x 0.5 mm. The schematic is shown in Figure 2. Cyclic voltammetry (CV) and galvanostatic deposition methods are used to electropolymerize the PEDOT films using a Bioanalytical Systems Inc. (BASI) C3 cell stand (Figure 3). The counter-ion for the PEDOT film is tailored to suit the analyte ion of interest. A PEDOT with poly(styrenesulfonate) counter ion (PEDOT/PSS) is utilized for H(+) and CO3(2-), while one with sulphate (added to the solution as CaSO4) is utilized for Ca(2+). The electrochemical properties of the PEDOT-coated WE is analyzed using CVs in redox-active solution (i.e. 2 mM potassium ferricyanide (K3Fe(CN)6)). Based on the CV profile, Randles-Sevcik analysis was used to determine the effective surface area (10). Spin-coating at 1,500 rpm is used to cast ~2 μm thick ion-selective membranes (ISMs) on the MAB working electrodes (WEs). The MAB is contained in a microfluidic flow-cell chamber filled with a 150 μl volume of algal medium; the contact pads are electrically connected to the BASI system (Figure 4). The photosynthetic activity of Chlorella vulgaris is monitored in ambient light and dark conditions.
芯片实验室(LOC)在环境、生物医学、农业、生物学及航天研究中的应用需要一种能在复杂生物介质中长时间储存的离子选择性电极(ISE)(1 - 4)。全固态离子选择性电极(ASSISE)对于上述应用尤其具有吸引力。该电极应具备以下良好特性:易于构建、维护成本低以及(具备)小型化潜力,以便进行批量处理。构建了一种用于定量测定H⁺、Ca²⁺和CO₃²⁻离子的微加工ASSISE。它由一个贵金属电极层(即铂)、一个传感转换层和一个离子选择性膜(ISM)层组成。传感转换层的作用是将离子选择性膜中与浓度相关的化学势转换为可测量的电信号。发现ASSISE的寿命取决于维持导电层/膜界面处的电位(5 - 7)。为了延长ASSISE的工作寿命,从而在界面层维持稳定的电位,我们使用导电聚合物(CP)聚(3,4 - 亚乙二氧基噻吩)(PEDOT)(7 - 9)代替银/氯化银(Ag/AgCl)作为传感转换层。我们以芯片实验室的形式构建了ASSISE,将其称为多分析物生物芯片(MAB)(图1)。在测试溶液中的校准表明,MAB可以监测pH(工作范围为pH 4 - 9)、CO₃²⁻(测量范围为0.01 mM - 1 mM)和Ca²⁺(对数线性范围为0.01 mM至1 mM)。用于pH测量的MAB在藻类培养基中储存近一个月后提供接近能斯特斜率的响应。碳酸盐生物芯片显示出与传统离子选择性电极相似的电位分布。采用生理测量方法监测模型系统普通小球藻的生物活性。MAB在尺寸、多功能性和多分析物传感能力方面具有优势,使其适用于地球上或太空中的许多受限监测情况。生物芯片设计与实验方法生物芯片尺寸为10×11 mm,有9个ASSISE被指定为工作电极(WE)和5个银/氯化银参比电极(RE)。每个工作电极(WE)直径为240μm,与直径为480μm的参比电极等间距1.4 mm。这些电极连接到尺寸为0.5 mm×0.5 mm的电接触垫上。示意图见图2。使用循环伏安法(CV)和恒电流沉积方法,通过Bioanalytical Systems Inc.(BASI)C3细胞支架(图3)对PEDOT薄膜进行电聚合。PEDOT薄膜的抗衡离子经过调整以适应感兴趣的分析物离子。带有聚(苯乙烯磺酸盐)抗衡离子的PEDOT(PEDOT/PSS)用于H⁺和CO₃²⁻,而带有硫酸盐(以CaSO₄形式添加到溶液中)的PEDOT用于Ca²⁺。在氧化还原活性溶液(即2 mM铁氰化钾(K₃Fe(CN)₆))中使用CV分析涂有PEDOT的工作电极的电化学性质。基于CV曲线,使用兰德尔 - 塞维克分析来确定有效表面积(10)。以1500 rpm的转速旋涂,在MAB工作电极(WE)上浇铸约2μm厚的离子选择性膜(ISM)。MAB包含在一个微流控流通池腔室中,该腔室充满150μl体积的藻类培养基;接触垫与BASI系统电连接(图4)。在自然光和黑暗条件下监测普通小球藻的光合活性。