Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany.
Int J Cancer. 2013 Nov;133(9):2123-32. doi: 10.1002/ijc.28235. Epub 2013 Jun 4.
Synthetic lethal interactions in cancer hold the potential for successful combined therapies, which would avoid the difficulties of single molecule-targeted treatment. Identification of interactions that are specific for human tumors is an open problem in cancer research. This work aims at deciphering synthetic sick or lethal interactions directly from somatic alteration, expression and survival data of cancer patients. To this end, we look for pairs of genes and their alterations or expression levels that are "avoided" by tumors and "beneficial" for patients. Thus, candidates for synthetic sickness or lethality (SSL) interaction are identified as such gene pairs whose combination of states is under-represented in the data. Our main methodological contribution is a quantitative score that allows ranking of the candidate SSL interactions according to evidence found in patient survival. Applying this analysis to glioblastoma data, we collect 1,956 synthetic sick or lethal partners for 85 abundantly altered genes, most of which show extensive copy number variation across the patient cohort. We rediscover and interpret known interaction between TP53 and PLK1, as well as provide insight into the mechanism behind EGFR interacting with AKT2, but not AKT1 nor AKT3. Cox model analysis determines 274 of identified interactions as having significant impact on overall survival in glioblastoma, which is more informative than a standard survival predictor based on patient's age.
癌症中的合成致死相互作用具有成功联合治疗的潜力,这将避免单分子靶向治疗的困难。识别对人类肿瘤特异性的相互作用是癌症研究中的一个开放性问题。这项工作旨在直接从癌症患者的体细胞改变、表达和生存数据中破译合成的病态或致死相互作用。为此,我们寻找基因对及其改变或表达水平,这些改变或表达水平被肿瘤“回避”,对患者“有益”。因此,候选的合成病态或致死(SSL)相互作用被确定为这样的基因对,其状态组合在数据中代表性不足。我们的主要方法贡献是一个定量评分,根据在患者生存中发现的证据对候选 SSL 相互作用进行排序。将此分析应用于胶质母细胞瘤数据,我们为 85 个大量改变的基因收集了 1956 个合成的病态或致死伙伴,其中大多数在患者队列中表现出广泛的拷贝数变异。我们重新发现并解释了已知的 TP53 和 PLK1 之间的相互作用,以及深入了解 EGFR 与 AKT2 相互作用的机制,但不是 AKT1 或 AKT3。Cox 模型分析确定了鉴定出的相互作用中的 274 个对胶质母细胞瘤的总体生存有显著影响,这比基于患者年龄的标准生存预测更具信息量。