Division of Hematopoietic Innovative Therapies (HIT), Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain.
Stem Cells. 2013 Aug;31(8):1726-30. doi: 10.1002/stem.1406.
Although there is an increasing interest in defining the role of DNA damage response mechanisms in cell reprogramming, the relevance of proteins participating in nonhomologous end joining (NHEJ), a major mechanism of DNA double-strand breaks repair, in this process remains to be investigated. Herein, we present data related to the reprogramming of primary mouse embryonic fibroblasts (MEF) from severe combined immunodeficient (Scid) mice defective in DNA-PKcs, a key protein for NHEJ. Reduced numbers of induced pluripotent stem cell (iPSC) colonies were generated from Scid cells using reprogramming lentiviral vectors (LV), being the reprogramming efficiency fourfold to sevenfold lower than that observed in wt cells. Moreover, these Scid iPSC-like clones were prematurely lost or differentiated spontaneously. While the Scid mutation neither reduce the proliferation rate nor the transduction efficacy of fibroblasts transduced with reprogramming LV, both the expression of SA-β-Gal and of P16/INK(4a) senescence markers were highly increased in Scid versus wt MEFs during the reprogramming process, accounting for the reduced reprogramming efficacy of Scid MEFs. The use of improved Sleeping Beauty transposon/transposase systems allowed us, however, to isolate DNA-PKcs-deficient iPSCs which preserved their parental genotype and hypersensitivity to ionizing radiation. This new disease-specific iPSC model would be useful to understand the physiological consequences of the DNA-PKcs mutation during development and would help to improve current cell and gene therapy strategies for the disease.
虽然人们越来越关注 DNA 损伤反应机制在细胞重编程中的作用,但参与非同源末端连接(NHEJ)的蛋白质的相关性,NHEJ 是 DNA 双链断裂修复的主要机制,在这个过程中仍有待研究。在此,我们提出了与严重联合免疫缺陷(Scid)小鼠来源的原代小鼠胚胎成纤维细胞(MEF)重编程相关的数据,这些小鼠在 NHEJ 的关键蛋白 DNA-PKcs 中存在缺陷。使用重编程慢病毒载体(LV)从 Scid 细胞中产生的诱导多能干细胞(iPSC)集落数量减少,重编程效率比 wt 细胞低四到七倍。此外,这些 Scid iPSC 样克隆会自发提前丢失或分化。虽然 Scid 突变既不会降低转导重组 LV 的成纤维细胞的增殖率,也不会降低其转导效率,但在重编程过程中,Scid MEF 中的 SA-β-Gal 和 P16/INK(4a)衰老标记物的表达都显著增加,这解释了 Scid MEF 重编程效率降低的原因。然而,使用改良的 Sleeping Beauty 转座子/转座酶系统,我们能够分离出 DNA-PKcs 缺陷型 iPSC,它们保留了其亲本基因型,并对电离辐射高度敏感。这种新的疾病特异性 iPSC 模型将有助于理解 DNA-PKcs 突变在发育过程中的生理后果,并有助于改进针对该疾病的当前细胞和基因治疗策略。