Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom.
Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom.
J Biol Chem. 2013 Jun 7;288(23):16671-16679. doi: 10.1074/jbc.M113.465310. Epub 2013 Apr 30.
Ryanodine receptor channels (RyR) are key components of striated muscle excitation-contraction coupling, and alterations in their function underlie both inherited and acquired disease. A full understanding of the disease process will require a detailed knowledge of the mechanisms and structures involved in RyR function. Unfortunately, high-resolution structural data, such as exist for K(+)-selective channels, are not available for RyR. In the absence of these data, we have used modeling to identify similarities in the structural elements of K(+) channel pore-forming regions and postulated equivalent regions of RyR. This has identified a sequence of residues in the cytosolic cavity-lining transmembrane helix of RyR (G(4864)LIIDA(4869) in RyR2) analogous to the glycine hinge motif present in many K(+) channels. Gating in these K(+) channels can be disrupted by substitution of residues for the hinge glycine. We investigated the involvement of glycine 4864 in RyR2 gating by monitoring properties of recombinant human RyR2 channels in which this glycine is replaced by residues that alter gating in K(+) channels. Our data demonstrate that introducing alanine at position 4864 produces no significant change in RyR2 function. In contrast, function is altered when glycine 4864 is replaced by either valine or proline, the former preventing channel opening and the latter modifying both ion translocation and gating. Our studies reveal novel information on the structural basis of RyR gating, identifying both similarities with, and differences from, K(+) channels. Glycine 4864 is not absolutely required for channel gating, but some flexibility at this point in the cavity-lining transmembrane helix is necessary for normal RyR function.
兰尼碱受体通道(RyR)是横纹肌兴奋-收缩偶联的关键组成部分,其功能的改变是遗传性和获得性疾病的基础。全面了解疾病过程将需要详细了解 RyR 功能涉及的机制和结构。不幸的是,像 K(+)选择性通道那样的高分辨率结构数据并不适用于 RyR。在缺乏这些数据的情况下,我们使用建模来识别 K(+)通道孔形成区域的结构元素之间的相似性,并假设 RyR 的等效区域。这确定了 RyR2 胞质腔衬里跨膜螺旋中的一系列残基(RyR2 中的 G(4864)LIIDA(4869))类似于许多 K(+)通道中存在的甘氨酸铰链基序。这些 K(+)通道中的门控可以通过取代铰链甘氨酸的残基来中断。我们通过监测该甘氨酸被取代为改变 K(+)通道门控的残基的重组人 RyR2 通道的特性,研究了 RyR2 门控中甘氨酸 4864 的参与。我们的数据表明,在位置 4864 引入丙氨酸不会对 RyR2 功能产生显著变化。相比之下,当甘氨酸 4864 被缬氨酸或脯氨酸取代时,功能会发生改变,前者阻止通道打开,后者改变离子易位和门控。我们的研究揭示了 RyR 门控的结构基础的新信息,确定了与 K(+)通道的相似性和差异。甘氨酸 4864 不是通道门控的绝对必需,但腔衬跨膜螺旋中该点的一些灵活性对于正常的 RyR 功能是必需的。