Suppr超能文献

基于多孔氟掺杂氧化锡导电骨架的最大极限性能改善对电极用于染料敏化太阳能电池。

The maximum limiting performance improved counter electrode based on a porous fluorine doped tin oxide conductive framework for dye-sensitized solar cells.

机构信息

National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, PR China.

出版信息

Nanoscale. 2013 Jun 7;5(11):4951-7. doi: 10.1039/c3nr33338h. Epub 2013 Apr 30.

Abstract

A novel porous fluorine doped tin oxide (PFTO) conductive framework was introduced to counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). When modified by platinum (Pt) or carbon (C), the PFTO conductive framework displays high catalytic activity to I(-)/I3(-) redox couples. Power conversion efficiencies of 6.09% and 5.81% were obtained in the DSSCs based on Pt and C modified PFTO CEs respectively, which were close to that of DSSCs with Pt coated FTO glass (6.05%) and Pt sheet (6.26%) CEs. Maximum limiting performances of the CEs were obtained from the polarization curves. The CE based on PFTO showed higher maximum limiting power conversion efficiency (20%) compared with the planar FTO substrate Pt CE (18%), with the increase of its surface area and electrocatalytic activity.

摘要

引入了一种新型的多孔氟掺杂氧化锡(PFTO)导电框架作为染料敏化太阳能电池(DSSC)的对电极(CE)。当修饰为铂(Pt)或碳(C)时,PFTO 导电框架对 I(-)/I3(-)氧化还原对显示出高催化活性。基于 Pt 和 C 修饰的 PFTO CE 的 DSSC 的功率转换效率分别为 6.09%和 5.81%,接近于具有 Pt 涂覆 FTO 玻璃(6.05%)和 Pt 片(6.26%)CE 的 DSSC。从极化曲线获得了 CE 的最大限制性能。与平面 FTO 基底 Pt CE(18%)相比,基于 PFTO 的 CE 显示出更高的最大限制功率转换效率(20%),这归因于其表面积和电催化活性的增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验