National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, PR China.
Nanoscale. 2013 Jun 7;5(11):4951-7. doi: 10.1039/c3nr33338h. Epub 2013 Apr 30.
A novel porous fluorine doped tin oxide (PFTO) conductive framework was introduced to counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). When modified by platinum (Pt) or carbon (C), the PFTO conductive framework displays high catalytic activity to I(-)/I3(-) redox couples. Power conversion efficiencies of 6.09% and 5.81% were obtained in the DSSCs based on Pt and C modified PFTO CEs respectively, which were close to that of DSSCs with Pt coated FTO glass (6.05%) and Pt sheet (6.26%) CEs. Maximum limiting performances of the CEs were obtained from the polarization curves. The CE based on PFTO showed higher maximum limiting power conversion efficiency (20%) compared with the planar FTO substrate Pt CE (18%), with the increase of its surface area and electrocatalytic activity.
引入了一种新型的多孔氟掺杂氧化锡(PFTO)导电框架作为染料敏化太阳能电池(DSSC)的对电极(CE)。当修饰为铂(Pt)或碳(C)时,PFTO 导电框架对 I(-)/I3(-)氧化还原对显示出高催化活性。基于 Pt 和 C 修饰的 PFTO CE 的 DSSC 的功率转换效率分别为 6.09%和 5.81%,接近于具有 Pt 涂覆 FTO 玻璃(6.05%)和 Pt 片(6.26%)CE 的 DSSC。从极化曲线获得了 CE 的最大限制性能。与平面 FTO 基底 Pt CE(18%)相比,基于 PFTO 的 CE 显示出更高的最大限制功率转换效率(20%),这归因于其表面积和电催化活性的增加。