Suppr超能文献

线虫 UNC-16(JIP3)在轴突起始段的细胞器门卫功能。

An organelle gatekeeper function for Caenorhabditis elegans UNC-16 (JIP3) at the axon initial segment.

机构信息

Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.

出版信息

Genetics. 2013 May;194(1):143-61. doi: 10.1534/genetics.112.147348.

Abstract

Neurons must cope with extreme membrane trafficking demands to produce axons with organelle compositions that differ dramatically from those of the cell soma and dendrites; however, the mechanism by which they accomplish this is not understood. Here we use electron microscopy and quantitative imaging of tagged organelles to show that Caenorhabditis elegans axons lacking UNC-16 (JIP3/Sunday Driver) accumulate Golgi, endosomes, and lysosomes at levels up to 10-fold higher than wild type, while ER membranes are largely unaffected. Time lapse microscopy of tagged lysosomes in living animals and an analysis of lysosome distributions in various regions of unc-16 mutant axons revealed that UNC-16 inhibits organelles from escaping the axon initial segment (AIS) and moving to the distal synaptic part of the axon. Immunostaining of native UNC-16 in C. elegans neurons revealed a localized concentration of UNC-16 at the initial segment, although UNC-16 is also sparsely distributed in distal regions of axons, including the synaptic region. Organelles that escape the AIS in unc-16 mutants show bidirectional active transport within the axon commissure that occasionally deposits them in the synaptic region, where their mobility decreases and they accumulate. These results argue against the long-standing, untested hypothesis that JIP3/Sunday Driver promotes anterograde organelle transport in axons and instead suggest an organelle gatekeeper model in which UNC-16 (JIP3/Sunday Driver) selectively inhibits the escape of Golgi and endosomal organelles from the AIS. This is the first evidence for an organelle gatekeeper function at the AIS, which could provide a regulatory node for controlling axon organelle composition.

摘要

神经元必须应对极端的膜运输需求,以产生具有与细胞体和树突明显不同的细胞器组成的轴突;然而,它们完成这一过程的机制尚不清楚。在这里,我们使用电子显微镜和标记细胞器的定量成像技术表明,缺乏 UNC-16(JIP3/Sunday Driver)的秀丽隐杆线虫轴突中高尔基体、内体和溶酶体的积累水平比野生型高出高达 10 倍,而内质网膜则基本不受影响。活动物中标记溶酶体的延时显微镜观察和对 unc-16 突变体轴突中各种区域溶酶体分布的分析表明,UNC-16 抑制细胞器从轴突起始段(AIS)逃逸并移动到轴突的远端突触部分。在秀丽隐杆线虫神经元中对天然 UNC-16 的免疫染色显示 UNC-16 在初始段局部集中,但 UNC-16 在轴突的远端区域(包括突触区域)也稀疏分布。在 unc-16 突变体中逃逸 AIS 的细胞器在轴突叉内显示出双向主动运输,偶尔会将它们沉积在突触区域,在那里它们的流动性降低并积累。这些结果反对长期以来未经测试的假设,即 JIP3/Sunday Driver 促进轴突中细胞器的正向运输,而是提出了一种细胞器守门员模型,其中 UNC-16(JIP3/Sunday Driver)选择性抑制高尔基体和内体细胞器从 AIS 逃逸。这是 AIS 处细胞器守门员功能的第一个证据,它可以为控制轴突细胞器组成提供一个调节节点。

相似文献

1
3
UNC-16/JIP3/sunday driver: a new cop on the organelle highway.
Genetics. 2013 May;194(1):35-7. doi: 10.1534/genetics.113.150490.
4
UNC-16 interacts with LRK-1 and WDFY-3 to regulate the termination of axon growth.
Genetics. 2024 Jun 5;227(2). doi: 10.1093/genetics/iyae053.
5
CRMP/UNC-33 organizes microtubule bundles for KIF5-mediated mitochondrial distribution to axon.
PLoS Genet. 2021 Feb 11;17(2):e1009360. doi: 10.1371/journal.pgen.1009360. eCollection 2021 Feb.
6
UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans.
Neuron. 2001 Dec 6;32(5):787-800. doi: 10.1016/s0896-6273(01)00532-3.
7
UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK-1/LRRK2 and AP complexes.
PLoS Genet. 2017 Nov 16;13(11):e1007100. doi: 10.1371/journal.pgen.1007100. eCollection 2017 Nov.

引用本文的文献

1
Engine breakdown of lysosomes and related organelles and the resulting physiology.
Front Cell Dev Biol. 2025 Jun 16;13:1575571. doi: 10.3389/fcell.2025.1575571. eCollection 2025.
2
OSP-1 protects neurons from autophagic cell death induced by acute oxidative stress.
Nat Commun. 2025 Jan 2;16(1):300. doi: 10.1038/s41467-024-55105-0.
3
Adult single-nucleus neuronal transcriptomes of insulin signaling mutants reveal regulators of behavior and learning.
Cell Genom. 2024 Dec 11;4(12):100720. doi: 10.1016/j.xgen.2024.100720. Epub 2024 Dec 4.
5
Disruptions in axonal lysosome transport and its contribution to neurological disease.
Curr Opin Cell Biol. 2024 Aug;89:102382. doi: 10.1016/j.ceb.2024.102382. Epub 2024 Jun 20.
6
LRK-1/LRRK2 and AP-3 regulate trafficking of synaptic vesicle precursors through active zone protein SYD-2/Liprin-α.
PLoS Genet. 2024 May 9;20(5):e1011253. doi: 10.1371/journal.pgen.1011253. eCollection 2024 May.
8
UNC-16 interacts with LRK-1 and WDFY-3 to regulate the termination of axon growth.
Genetics. 2024 Jun 5;227(2). doi: 10.1093/genetics/iyae053.
9
UNC-16 interacts with LRK-1 and WDFY-3 to regulate the termination of axon growth.
bioRxiv. 2024 Feb 16:2024.02.15.580526. doi: 10.1101/2024.02.15.580526.
10
JIP3 interacts with dynein and kinesin-1 to regulate bidirectional organelle transport.
J Cell Biol. 2022 Aug 1;221(8). doi: 10.1083/jcb.202110057. Epub 2022 Jul 13.

本文引用的文献

1
Sunday Driver/JIP3 binds kinesin heavy chain directly and enhances its motility.
EMBO J. 2011 Jul 12;30(16):3416-29. doi: 10.1038/emboj.2011.229.
3
Protein localization in electron micrographs using fluorescence nanoscopy.
Nat Methods. 2011 Jan;8(1):80-4. doi: 10.1038/nmeth.1537. Epub 2010 Nov 21.
4
Building and maintaining the axon initial segment.
Curr Opin Neurobiol. 2010 Aug;20(4):481-8. doi: 10.1016/j.conb.2010.04.012. Epub 2010 May 27.
7
Impaired dense core vesicle maturation in Caenorhabditis elegans mutants lacking Rab2.
J Cell Biol. 2009 Sep 21;186(6):881-95. doi: 10.1083/jcb.200902095.
8
A network of G-protein signaling pathways control neuronal activity in C. elegans.
Adv Genet. 2009;65:145-192. doi: 10.1016/S0065-2660(09)65004-5.
9
A selective filter for cytoplasmic transport at the axon initial segment.
Cell. 2009 Mar 20;136(6):1148-60. doi: 10.1016/j.cell.2009.01.016. Epub 2009 Mar 5.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验