Edwards Stacey L, Morrison Logan M, Yorks Rosalina M, Hoover Christopher M, Boominathan Soorajnath, Miller Kenneth G
Genetic Models of Disease Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104.
Genetic Models of Disease Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
Genetics. 2015 Sep;201(1):117-41. doi: 10.1534/genetics.115.177345.
The conserved protein UNC-16 (JIP3) inhibits the active transport of some cell soma organelles, such as lysosomes, early endosomes, and Golgi, to the synaptic region of axons. However, little is known about UNC-16's organelle transport regulatory function, which is distinct from its Kinesin-1 adaptor function. We used an unc-16 suppressor screen in Caenorhabditis elegans to discover that UNC-16 acts through CDK-5 (Cdk5) and two conserved synapse assembly proteins: SAD-1 (SAD-A Kinase), and SYD-2 (Liprin-α). Genetic analysis of all combinations of double and triple mutants in unc-16(+) and unc-16(-) backgrounds showed that the three proteins (CDK-5, SAD-1, and SYD-2) are all part of the same organelle transport regulatory system, which we named the CSS system based on its founder proteins. Further genetic analysis revealed roles for SYD-1 (another synapse assembly protein) and STRADα (a SAD-1-interacting protein) in the CSS system. In an unc-16(-) background, loss of the CSS system improved the sluggish locomotion of unc-16 mutants, inhibited axonal lysosome accumulation, and led to the dynein-dependent accumulation of lysosomes in dendrites. Time-lapse imaging of lysosomes in CSS system mutants in unc-16(+) and unc-16(-) backgrounds revealed active transport defects consistent with the steady-state distributions of lysosomes. UNC-16 also uses the CSS system to regulate the distribution of early endosomes in neurons and, to a lesser extent, Golgi. The data reveal a new and unprecedented role for synapse assembly proteins, acting as part of the newly defined CSS system, in mediating UNC-16's organelle transport regulatory function.
保守蛋白UNC-16(JIP3)会抑制某些细胞体细胞器(如溶酶体、早期内体和高尔基体)向轴突突触区域的主动运输。然而,关于UNC-16的细胞器运输调节功能却知之甚少,该功能与其驱动蛋白-1衔接蛋白功能不同。我们利用秀丽隐杆线虫中的unc-16抑制子筛选发现,UNC-16通过细胞周期蛋白依赖性激酶5(CDK-5)以及两种保守的突触组装蛋白发挥作用:SAD-1(SAD-A激酶)和SYD-2(脂锚定蛋白-α)。对unc-16(+)和unc-16(-)背景下双突变体和三突变体的所有组合进行遗传分析表明,这三种蛋白(CDK-5、SAD-1和SYD-2)均是同一细胞器运输调节系统的组成部分,我们根据其起始蛋白将该系统命名为CSS系统。进一步的遗传分析揭示了SYD-1(另一种突触组装蛋白)和STRADα(一种与SAD-1相互作用的蛋白)在CSS系统中的作用。在unc-16(-)背景下,CSS系统的缺失改善了unc-16突变体迟缓的运动能力,抑制了轴突溶酶体的积累,并导致溶酶体在树突中依赖动力蛋白的积累。对unc-16(+)和unc-16(-)背景下CSS系统突变体中溶酶体的延时成像显示,主动运输缺陷与溶酶体的稳态分布一致。UNC-16还利用CSS系统调节神经元中早期内体的分布,对高尔基体的调节作用较小。这些数据揭示了突触组装蛋白作为新定义的CSS系统一部分,在介导UNC-16的细胞器运输调节功能方面发挥的全新且前所未有的作用。