Suppr超能文献

土壤有机碳固存潜力的元模型及其在区域尺度上的应用。

Meta-modeling soil organic carbon sequestration potential and its application at regional scale.

机构信息

CSIRO Land and Water, Black Mountain, Canberra ACT 2601, Australia.

出版信息

Ecol Appl. 2013 Mar;23(2):408-20. doi: 10.1890/12-0672.1.

Abstract

Upscaling the results from process-based soil-plant models to assess regional soil organic carbon (SOC) change and sequestration potential is a great challenge due to the lack of detailed spatial information, particularly soil properties. Meta-modeling can be used to simplify and summarize process-based models and significantly reduce the demand for input data and thus could be easily applied on regional scales. We used the pre-validated Agricultural Production Systems sIMulator (APSIM) to simulate the impact of climate, soil, and management on SOC at 613 reference sites across Australia's cereal-growing regions under a continuous wheat system. We then developed a simple meta-model to link the APSIM-modeled SOC change to primary drivers, i.e., the amount of recalcitrant SOC, plant available water capacity of soil, soil pH, and solar radiation, temperature, and rainfall in the growing season. Based on high-resolution soil texture data and 8165 climate data points across the study area, we used the meta-model to assess SOC sequestration potential and the uncertainty associated with the variability of soil characteristics. The meta-model explained 74% of the variation of final SOC content as simulated by APSIM. Applying the meta-model to Australia's cereal-growing regions reveals regional patterns in SOC, with higher SOC stock in cool, wet regions. Overall, the potential SOC stock ranged from 21.14 to 152.71 Mg/ha with a mean of 52.18 Mg/ha. Variation of soil properties induced uncertainty ranging from 12% to 117% with higher uncertainty in warm, wet regions. In general, soils in Australia's cereal-growing regions under continuous wheat production were simulated as a sink of atmospheric carbon dioxide with a mean sequestration potential of 8.17 Mg/ha.

摘要

将基于过程的土壤-植物模型的结果扩展到评估区域土壤有机碳 (SOC) 变化和固存潜力是一项巨大的挑战,因为缺乏详细的空间信息,特别是土壤特性。元模型可以用于简化和总结基于过程的模型,并大大减少对输入数据的需求,因此可以很容易地应用于区域尺度。我们使用经过预先验证的农业生产系统模拟器 (APSIM) 来模拟气候、土壤和管理对澳大利亚谷物种植区 613 个参考点在连续小麦系统下 SOC 的影响。然后,我们开发了一个简单的元模型,将 APSIM 模拟的 SOC 变化与主要驱动因素联系起来,即难分解 SOC 的数量、土壤的植物有效水容量、土壤 pH 值以及生长季节的太阳辐射、温度和降雨量。基于研究区域内的高分辨率土壤质地数据和 8165 个气候数据点,我们使用元模型评估 SOC 固存潜力以及与土壤特性变异性相关的不确定性。元模型解释了 APSIM 模拟的最终 SOC 含量变化的 74%。将元模型应用于澳大利亚的谷物种植区揭示了 SOC 的区域模式,在凉爽、潮湿的地区 SOC 储量较高。总体而言,潜在 SOC 储量范围为 21.14 至 152.71 Mg/ha,平均值为 52.18 Mg/ha。土壤特性的变化引起的不确定性范围从 12%到 117%不等,在温暖、潮湿的地区不确定性更高。总体而言,在澳大利亚连续小麦生产下的谷物种植区的土壤被模拟为大气二氧化碳的汇,平均固存潜力为 8.17 Mg/ha。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验