Biomedical Engineering Graduate Program and Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7, Canada.
Med Phys. 2013 May;40(5):052903. doi: 10.1118/1.4800797.
Three-dimensional ultrasound (3DUS) vessel wall volume (VWV) provides a 3D measurement of carotid artery wall remodeling and atherosclerotic plaque and is sensitive to temporal changes of carotid plaque burden. Unfortunately, although 3DUS VWV provides many advantages compared to measurements of arterial wall thickening or plaque alone, it is still not widely used in research or clinical practice because of the inordinate amount of time required to train observers and to generate 3DUS VWV measurements. In this regard, semiautomated methods for segmentation of the carotid media-adventitia boundary (MAB) and the lumen-intima boundary (LIB) would greatly improve the time to train observers and for them to generate 3DUS VWV measurements with high reproducibility.
The authors describe a 3D algorithm based on a modified sparse field level set method for segmenting the MAB and LIB of the common carotid artery (CCA) from 3DUS images. To the authors' knowledge, the proposed algorithm is the first direct 3D segmentation method, which has been validated for segmenting both the carotid MAB and the LIB from 3DUS images for the purpose of computing VWV. Initialization of the algorithm requires the observer to choose anchor points on each boundary on a set of transverse slices with a user-specified interslice distance (ISD), in which larger ISD requires fewer user interactions than smaller ISD. To address the challenges of the MAB and LIB segmentations from 3DUS images, the authors integrated regional- and boundary-based image statistics, expert initializations, and anatomically motivated boundary separation into the segmentation. The MAB is segmented by incorporating local region-based image information, image gradients, and the anchor points provided by the observer. Moreover, a local smoothness term is utilized to maintain the smooth surface of the MAB. The LIB is segmented by constraining its evolution using the already segmented surface of the MAB, in addition to the global region-based information and the anchor points. The algorithm-generated surfaces were sliced and evaluated with respect to manual segmentations on a slice-by-slice basis using 21 3DUS images.
The authors used ISD of 1, 2, 3, 4, and 10 mm for algorithm initialization to generate segmentation results. The algorithm-generated accuracy and intraobserver variability results are comparable to the previous methods, but with fewer user interactions. For example, for the ISD of 3 mm, the algorithm yielded an average Dice coefficient of 94.4% ± 2.2% and 90.6% ± 5.0% for the MAB and LIB and the coefficient of variation of 6.8% for computing the VWV of the CCA, while requiring only 1.72 min (vs 8.3 min for manual segmentation) for a 3DUS image.
The proposed 3D semiautomated segmentation algorithm yielded high-accuracy and high-repeatability, while reducing the expert interaction required for initializing the algorithm than the previous 2D methods.
三维超声(3DUS)血管壁容积(VWV)可对颈动脉壁重构和动脉粥样硬化斑块进行三维测量,且对颈动脉斑块负荷的时间变化敏感。不幸的是,尽管与单独测量动脉壁增厚或斑块相比,3DUS VWV 具有许多优势,但由于需要大量时间来培训观察者并生成 3DUS VWV 测量值,因此它仍未在研究或临床实践中广泛使用。在这方面,用于分割颈动脉中膜-外膜边界(MAB)和管腔-内膜边界(LIB)的半自动方法将大大缩短观察者的培训时间,并使其能够以高重复性生成 3DUS VWV 测量值。
作者描述了一种基于改进的稀疏场水平集方法的 3D 算法,用于从 3DUS 图像中分割颈总动脉(CCA)的 MAB 和 LIB。据作者所知,该算法是第一个直接的 3D 分割方法,已针对从 3DUS 图像中分割颈动脉 MAB 和 LIB 进行了验证,以便计算 VWV。该算法的初始化需要观察者在一组具有用户指定的层间距(ISD)的横截面上选择每条边界上的锚点,其中较大的 ISD 比较小的 ISD 需要更少的用户交互。为了解决从 3DUS 图像中分割 MAB 和 LIB 的挑战,作者将基于区域和边界的图像统计、专家初始化和基于解剖学的边界分离集成到分割中。MAB 是通过结合局部基于区域的图像信息、图像梯度和观察者提供的锚点来分割的。此外,利用局部平滑项来保持 MAB 的光滑表面。LIB 是通过利用已经分割的 MAB 表面,以及全局基于区域的信息和锚点来约束其演化来分割的。通过切片生成的表面与手动分割在逐片基础上进行了评估,共使用了 21 个 3DUS 图像。
作者使用 ISD 为 1、2、3、4 和 10mm 来初始化算法,以生成分割结果。与之前的方法相比,该算法生成的准确性和观察者内可变性结果相当,但用户交互更少。例如,对于 ISD 为 3mm,算法生成的 MAB 和 LIB 的平均 Dice 系数分别为 94.4%±2.2%和 90.6%±5.0%,计算 CCA 的 VWV 的变异系数为 6.8%,而生成一个 3DUS 图像仅需 1.72 分钟(而手动分割需要 8.3 分钟)。
与之前的 2D 方法相比,所提出的 3D 半自动分割算法在减少算法初始化所需的专家交互的同时,获得了高精度和高可重复性。