Suppr超能文献

开发一种三维颈动脉超声图像分割工作流程,以提高测量血管壁和斑块体积及厚度的效率、可重复性和准确性。

Development of a Three-Dimensional Carotid Ultrasound Image Segmentation Workflow for Improved Efficiency, Reproducibility and Accuracy in Measuring Vessel Wall and Plaque Volume and Thickness.

作者信息

Zhao Yuan, Jiang Mingjie, Chan Wai Sum, Chiu Bernard

机构信息

Department of Electrical Engineering, City University of Hong Kong, Hong Kong.

Department of Physics & Computer Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.

出版信息

Bioengineering (Basel). 2023 Oct 18;10(10):1217. doi: 10.3390/bioengineering10101217.

Abstract

Automated segmentation of carotid lumen-intima boundary (LIB) and media-adventitia boundary (MAB) by deep convolutional neural networks (CNN) from three-dimensional ultrasound (3DUS) images has made assessment and monitoring of carotid atherosclerosis more efficient than manual segmentation. However, training of CNN still requires manual segmentation of LIB and MAB. Therefore, there is a need to improve the efficiency of manual segmentation and develop strategies to improve segmentation accuracy by the CNN for serial monitoring of carotid atherosclerosis. One strategy to reduce segmentation time is to increase the interslice distance (ISD) between segmented axial slices of a 3DUS image while maintaining the segmentation reliability. We, for the first time, investigated the effect of ISD on the reproducibility of MAB and LIB segmentations. The intra-observer reproducibility of LIB and MAB segmentations at ISDs of 1 mm and 2 mm was not statistically significantly different, whereas the reproducibility at ISD = 3 mm was statistically lower. Therefore, we conclude that segmentation with an ISD of 2 mm provides sufficient reliability for CNN training. We further proposed training the CNN by the baseline images of the entire cohort of patients for automatic segmentation of the follow-up images acquired for the same cohort. We validated that segmentation with this time-based partitioning approach is more accurate than that produced by patient-based partitioning, especially at the carotid bifurcation. This study forms the basis for an efficient, reproducible, and accurate 3DUS workflow for serial monitoring of carotid atherosclerosis useful in risk stratification of cardiovascular events and in evaluating the efficacy of new treatments.

摘要

利用深度卷积神经网络(CNN)从三维超声(3DUS)图像中自动分割颈动脉管腔-内膜边界(LIB)和中膜-外膜边界(MAB),使得颈动脉粥样硬化的评估和监测比手动分割更高效。然而,CNN的训练仍需要手动分割LIB和MAB。因此,有必要提高手动分割的效率,并开发策略以提高CNN的分割准确性,用于颈动脉粥样硬化的连续监测。减少分割时间的一种策略是增加3DUS图像分割轴向切片之间的层间距(ISD),同时保持分割的可靠性。我们首次研究了ISD对MAB和LIB分割再现性的影响。在1毫米和2毫米的ISD下,LIB和MAB分割的观察者内再现性在统计学上没有显著差异,而在ISD = 3毫米时,再现性在统计学上较低。因此,我们得出结论,使用2毫米的ISD进行分割为CNN训练提供了足够的可靠性。我们进一步建议通过整个患者队列的基线图像训练CNN,以自动分割为同一队列获取的后续图像。我们验证了这种基于时间的划分方法进行的分割比基于患者的划分方法产生的分割更准确,尤其是在颈动脉分叉处。这项研究为一种高效、可重复且准确的3DUS工作流程奠定了基础,该流程用于颈动脉粥样硬化的连续监测,对心血管事件的风险分层以及评估新治疗方法的疗效很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce9a/10603859/eb2b66a7542e/bioengineering-10-01217-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验