Cicoira Fabio, Santato Clara, Rosei Federico
Department of Materials Science and Engineering, Bard Hall, Cornell University, 14853-1501, Ithaca, NY, USA.
Top Curr Chem. 2008;285:203-67. doi: 10.1007/128_2008_2.
Controlled two-dimensional assembly of organic molecules can be successfully realized by meansof surface nanotemplates that provide surface cues for assembly upon adsorption. Examples of suchtemplates are nanostructured surfaces and organic porous networks. In this review, we discuss theformation and use of such templates for controlled molecular assembly. The formation of the organicporous network is typically based on non-covalent interactions, e.g., hydrogen bonds, dipole-dipoleinteractions, metal-organic coordination bonds together with substrate-mediated molecular interactions.The pores of the network can act as hosts for specific organic molecules. The chemical structureof the molecular building blocks of the porous network has a primary effect on the shape, size,and chemical reactivity of the cavities. Long-range mesoscale reconstructions can also be employedas surface nanotemplates based on the selective adsorption of atomic or molecular species at specificsurface sites. Scanning tunneling microscopy is the key tool to study the formation of the nanotemplatesas well as the effect of the template in the growth of the ordered organic structures. The reportedstudies contribute to build the rationale in the design and fabrication of two-dimensional organicnetworks. The topic covered in this review represents an important challenge in nanotechnology sincethese findings might have a wide range of applications, e.g., in electronics, sensing, and bio-recognition.
通过表面纳米模板可以成功实现有机分子的可控二维组装,这些模板在吸附时为组装提供表面线索。此类模板的例子包括纳米结构表面和有机多孔网络。在这篇综述中,我们讨论了用于可控分子组装的此类模板的形成和应用。有机多孔网络的形成通常基于非共价相互作用,例如氢键、偶极 - 偶极相互作用、金属 - 有机配位键以及底物介导的分子相互作用。网络的孔可以作为特定有机分子的宿主。多孔网络分子构建单元的化学结构对腔的形状、大小和化学反应性有主要影响。基于原子或分子物种在特定表面位点的选择性吸附,长程中尺度重构也可以用作表面纳米模板。扫描隧道显微镜是研究纳米模板形成以及模板在有序有机结构生长中作用的关键工具。所报道的研究有助于建立二维有机网络设计和制造的理论基础。本综述涵盖的主题代表了纳米技术中的一项重要挑战,因为这些发现可能有广泛的应用,例如在电子、传感和生物识别方面。